首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pathophysiology of Helicobacter pylori-associated gastroduodenal diseases, ulcerogenesis, and carcinogenesis is intimately linked to activation of epidermal growth factor receptor (EGFR) and production of vascular endothelial growth factor (VEGF). Extracellular virulence factors, such as CagA and VacA, have been proposed to regulate EGFR activation and VEGF production in gastric epithelial cells. We demonstrate that the H. pylori secretory protein, HP0175, by virtue of its ability to bind TLR4, transactivates EGFR and stimulates EGFR-dependent VEGF production in the gastric cancer cell line AGS. Knock-out of the hp0175 gene attenuates the ability of the resultant H. pylori strain to activate EGFR or to induce VEGF production. HP0175-induced activation of EGFR is preceded by translocation of TLR4 into lipid rafts. In lipid rafts, the Src kinase family member Lyn interacts with TLR4, leading to tyrosine phosphorylation of TLR4. Knockdown of Lyn prevents HP0175-induced activation of EGFR and VEGF production. Tyrosine-phosphorylated TLR4 interacts with EGFR. This interaction is necessary for the activation of EGFR. Disruption of lipid rafts with methyl beta-cyclodextrin prevents HP0175-induced tyrosine phosphorylation of TLR4 and activation of EGFR. This mechanism of transactivation of EGFR is novel and distinct from that of metalloprotease-dependent shedding of EGF-like ligands, leading to autocrine activation of EGFR. It provides new insight into our understanding of the receptor cross-talk network.  相似文献   

3.
4.
5.
The permeability transition pore is involved in the mitochondrial pathway of apoptosis. Cyclophilin D, a pore component, has catalytic activity as a peptidyl prolyl cis, trans-isomerase (PPIase), which is essential to the pore opening. It has been reported that cyclophilin D overexpression suppresses apoptosis in cancer cells. To clarify the mechanism of this effect, we generated glioma cells overexpressing wild-type or a PPIase-deficient mutant of cyclophilin D. Interestingly, we found that the PPIase-dependent apoptosis suppression by cyclophilin D correlated with the amounts of mitochondrial-bound hexokinase II, which has anti-apoptotic activity. Inactivation of endogenous cyclophilin D by small interference RNA or a cyclophilin inhibitor was found to release hexokinase II from mitochondria and to enhance Bax-mediated apoptosis. The anti-apoptotic effects of cyclophilin D were canceled out by the detachment of hexokinase II from mitochondria, demonstrating that mitochondrial binding of hexokinase II is essential to the apoptosis suppression by cyclophilin D. Furthermore, cyclophilin D dysfunction appears to abrogate hexokinase II-mediated apoptosis suppression, indicating that cyclophilin D is required for the anti-apoptotic activity of hexokinase II. Based on the above, we propose here that cyclophilin D suppresses apoptotic cell death via a mitochondrial hexokinase II-dependent mechanism in cancer cells.  相似文献   

6.
7.
In this study, we have evaluated the effects on cell cycle regulation of VacA alone and in combination with other two Helicobacter pylori proteins, cytotoxin-associated protein (CagA) and HspB, using the human gastric epithelial cells (AGS). Our results indicate that VacA alone was able to inhibit the G1 to S progression of the cell cycle. The VacA capacity of inhibiting cell progression from G1 to S phase was also observed when cells were co-transfected with CagA or HspB. Moreover, VacA over-expression caused apoptosis in AGS cells through activation of caspase 8 and even more of caspase 9, thus indicating an involvement of both the receptor-mediated and the mitochondrial pathways of apoptosis. Indeed, the two pathways probably can co-operate to execute cell death with a prevalence of the mitochondrial pathways. Our data taken together provide additional information to further enhance our understanding of the molecular mechanism by which H. pylori proteins alter the growth status of human gastric epithelial cells.  相似文献   

8.
BACKGROUND: Helicobacter pylori infection leads to gastritis, peptic ulcer, and gastric cancer, in part due to epithelial damage following bacteria binding to the epithelium. Infection with cag pathogenicity island (PAI) bearing strains of H. pylori is associated with increased gastric inflammation and a higher incidence of gastroduodenal diseases. It is now known that various effector molecules are injected into host epithelial cells via a type IV secretion apparatus, resulting in cytoskeletal changes and chemokine secretion. Whether binding of bacteria and subsequent apoptosis of gastric epithelial cells are altered by cag PAI status was examined in this study. METHODS: AGS, Kato III, and N87 human gastric epithelial cell lines were incubated with cag PAI-positive or cag PAI-negative strains of H. pylori in the presence or absence of clarithromycin. Binding was evaluated by flow cytometry and scanning electron microscopy. Apoptosis was assessed by detection of DNA degradation and ELISA detection of exposed histone residues. RESULTS: cag PAI-negative strains bound to gastric epithelial cells to the same extent as cag PAI-positive strains. Both cag PAI-positive and cag PAI-negative strains induced apoptosis. However, cag PAI-positive strains induced higher levels of DNA degradation. Incubation with clarithromycin inactivated H. pylori but did not affect binding. However, pretreatment with clarithromycin decreased infection-induced apoptosis. CONCLUSIONS: cag PAI status did not affect binding of bacteria to gastric epithelial cells but cag PAI-positive H. pylori induced apoptosis more rapidly than cag PAI-negative mutant strains, suggesting that H. pylori binding and subsequent apoptosis are differentially regulated with regard to bacterial properties.  相似文献   

9.
10.
In vivo and in vitro studies have shown an increase in apoptosis in gastric epithelial cells in persons infected with Helicobacter pylori. H. pylori-induced activation of caspase-8 and -3 was evaluated using a human gastric adenocarcinoma cell line (AGS) and gastric tissue from humans and monkeys colonized with H. pylori. The enzymatic activity of caspase-8 was detected only in AGS cells exposed to H. pylori up to 24 h. The active form of caspase-8 was present by Western blot after exposure to H. pylori for 3 h and persisted through 24 h. Caspase-3 activity was present in AGS cells exposed to H. pylori for 3 h, reaching a maximum after 24 h (a sevenfold increase in activity). Caspase-8-mediated cleavage of procaspase-3 generated a 20-kDa band (indicative of the presence of active caspase-3) present only in AGS cells exposed to H. pylori. Active caspase-3 staining was markedly increased in gastric mucosa from infected persons and animals, compared to uninfected controls by immunohistochemistry. Stimulation of downstream events leading to apoptosis, such as the cleavage of PARP (poly adenosine-diphosphate-ribose polymerase) and DFF45 (DNA fragmentation factor 45) as a result of activation of caspase-3, was evaluated. PARP was cleaved, resulting in the presence of both an 89- and a 24-kDa band along with DFF45, resulting in the presence of 10- and 12-kDa bands only in gastric cells exposed to H. pylori. Our data show that H. pylori stimulates the activation of caspases and downstream mediators of caspase-induced apoptosis. This suggests that H. pylori-induced apoptosis is mediated through caspase pathways, which include the activation of caspase-8 and subsequent cleavage and activation of caspase-3. This is consistent with caspase-3 activation that was found in the gastric mucosa of humans and monkeys infected with H. pylori.  相似文献   

11.
Proteins released by Helicobacter pylori in vitro   总被引:7,自引:0,他引:7       下载免费PDF全文
Secretion of proteins by Helicobacter pylori may contribute to gastric inflammation and epithelial damage. An in vitro analysis was designed to identify proteins released by mechanisms other than nonspecific lysis. The radioactivity of proteins in the supernatant was compared with that of the intact organism by two-dimensional gel phosphorimaging following a 4-h pulse-chase. The ratio of the amount of UreB, a known cytoplasmic protein, in the supernatant to that in the pellet was found to be 0.25, and this was taken as an index of lysis during the experiments (n = 6). Ratios greater than that of UreB were used to distinguish proteins that were selectively released into the medium. Thus, proteins enriched more than 10-fold in the supernatant compared to UreB were identified by mass spectrometry. Sixteen such proteins were present in the supernatant: VacA; a conserved secreted protein (HP1286); putative peptidyl cis-trans isomerase (HP0175); six proteins encoded by HP0305, HP0231, HP0973, HP0721, HP0129, and HP0902; thioredoxin (HP1458); single-stranded-DNA-binding 12RNP2 precursor (HP0827); histone-like DNA-binding protein HU (HP0835); ribosomal protein L11 (HP1202); a putative outer membrane protein (HP1564); and outer membrane proteins Omp21 (HP0913) and Omp20 (HP0912). All except HP0902, thioredoxin, HP0827, HP0835, and HP1202 had a signal peptide. When nalidixic acid, a DNA synthesis inhibitor, was added to inhibit cell division but not protein synthesis, to decrease possible contamination due to outer membrane shedding, two outer membrane proteins (Omp21 and Omp20) disappeared from the supernatant, and the amount of VacA also decreased. Thus, 13 proteins were still enriched greater than 10-fold in the medium after nalidixic acid treatment, suggesting these were released specifically, possibly by secretion. These proteins may be implicated in H. pylori-induced effects on the gastric epithelium.  相似文献   

12.
The vacuolating cytotoxin VacA of Helicobacter pylori plays an important but yet unknown role in pathogenesis. We studied the impact of the vacuolating cytotoxin on H. pylori invasion of and survival within AGS cells (human gastric cell line derived from an antral adenocarcinoma). Isogenic vacA and cagA mutants were constructed in a wild-type clinical isolate H. pylori, AF4. An H. pylori VacA-deficient mutant, AF4(vacA::kan), was cultured in significantly lower numbers from AGS cells after 24 h incubation with gentamicin added to the culture medium than were the type I wild-type strain AF4 (P<0.03) and an isogenic cagA mutant (P<0.01). Complementation of the AF4 vacA mutant with broth culture supernatant from wild-type AF4 improved the intracellular survival of the vacA mutant. We conclude that H. pylori's vacuolating cytotoxin improves the intracellular survival of H. pylori within AGS cells, suggesting the role of the vacuolating cytotoxin in H. pylori pathogenesis.  相似文献   

13.
Helicobacter pylori inhibits gastric cell cycle progression   总被引:3,自引:0,他引:3  
Helicobacter pylori infection of the gastric mucosa is associated with changes in gastric epithelial cell proliferation. In vitro studies have shown that exposure to H. pylori inhibits proliferation of gastric cells. This study sought to investigate the cell cycle progression of gastric epithelial cell lines in the presence and absence of H. pylori. Unsynchronized and synchronized gastric epithelial cell lines AGS and KatoIII were exposed to H. pylori over a 24-h period. Cell cycle progression was determined by flow cytometry using propidium iodide (PI), and by analysis of cyclin E, p21, and p53 protein expression using Western blots. In the absence of H. pylori 40, 45, and 15% of unsynchronized AGS cells were in G(0)-G(1), S, and G(2)-M phases, respectively, by flow cytometry analysis. When AGS cells were cultured in the presence of H. pylori, the S phase decreased 10% and the G(0)-G(1) phase increased 17% after 24 h compared with the controls. KatoIII cells, which have a deleted p53 gene, showed little or no response to H. pylori. When G1/S synchronized AGS cells were incubated with media containing H. pylori, the G(1) phase increased significantly (25%, P < 0.05) compared with controls after 24 h. In contrast, the control cells were able to pass through S phase. The inhibitory effects of H. pylori on the cell cycle of AGS cells were associated with a significant increase in p53 and p21 expression after 24 h. The expression of cyclin E was downregulated in AGS cells following exposure of AGS cells to H. pylori for 24 h. This study shows that H. pylori-induced growth inhibition in vitro is predominantly at the G(0)-G(1) checkpoint. Our results suggest that p53 may be important in H. pylori-induced cell cycle arrest. These results support a role for cyclin-dependent kinase inhibitors in the G(1) cell cycle arrest exerted by H. pylori and its involvement in changing the regulatory proteins, p53, p21, and cyclin E in the cell cycle.  相似文献   

14.
Helicobacter pylori infection induces apoptosis and inducible nitric oxide synthase (iNOS) expression in gastric epithelial cells. In this study, we investigated the effects of NF-kappaB activation and iNOS expression on apoptosis in H. pylori-infected gastric epithelial cells. The suppression of NF-kappaB significantly increased caspase-3 activity and apoptosis in H. pylori-infected MKN-45 and Hs746T gastric epithelial cell lines as well as primary gastric epithelial cells. An NF-kappaB signaling pathway via NF-kappaB-inducing kinase and IkappaB kinase-beta activation was found to be involved in the inhibition of apoptosis in H. pylori-infected gastric epithelial cells. In gastric epithelial cells transfected with retrovirus containing IkappaBalpha superrepressor, iNOS mRNA and protein levels were reduced, indicating that H. pylori infection induced the expression of iNOS by activating NF-kappaB. Moreover, a NO donor, S-nitroso-N-acetylpenicillamine (100 microM), decreased caspase-3 activity and apoptosis in NF-kappaB-suppressed cells infected with H. pylori. These results suggest that NF-kappaB activation may play a role in protecting gastric epithelial cells from H. pylori-induced apoptosis by upregulating endogenous iNOS.  相似文献   

15.
Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.  相似文献   

16.
Helicobacter pylori and apoptosis.   总被引:3,自引:0,他引:3  
In an attempt to understand the diverse effects of infection with Helicobacter pylori on epithelial mucosal mass and consequent clinical outcome, the relationship between H. pylori infection and gastric epithelial cellular turnover has been investigated. Our results indicate that H. pylori increases epithelial cell proliferation and apoptosis in vivo, but that infection with bacteria of the cagA genotype leads to relatively more proliferation than apoptosis. This review explores the causes of the induction of apoptosis in gastric epithelial cells by H. pylori and the consequences of alterations in apoptosis to the maintenance of gastric mucosal homeostasis.  相似文献   

17.
18.
A novel apoptosis-inducing protein from Helicobacter pylori   总被引:4,自引:0,他引:4  
Helicobacter pylori infection induces apoptosis in gastric epithelial cells. Here, we report a novel apoptosis-inducing protein that functions as a leading factor in H. pylori-mediated apoptosis induction. We purified the protein from H. pylori by separating fractions that showed apoptosis-inducing activity. This protein induced apoptosis of AGS cells in a dose-dependent manner. The purified protein consisted of two protein fragments with molecular masses of about 40 and 22 kDa, which combined to constitute a single complex in their natural form. N-terminal sequencing indicated that both these protein fragments were encoded by the HP1118 gene. The purified protein exhibited gamma-glutamyl transpeptidase activity, the inhibition of which by 6-diazo-5-oxo-l-norleucine resulted in a complete loss of apoptosis-inducing activity. To the best of our knowledge, the apoptosis-inducing function is a newly identified physiological role for bacterial gamma-glutamyl transpeptidase. The apoptosis-inducing activity of the isogenic mutant gamma-glutamyl transpeptidase-deficient strain was significantly lower compared with that of the parent strain, demonstrating that gamma-glutamyl transpeptidase plays a significant role in H. pylori-mediated apoptosis. Our findings provide new insights into H. pylori pathogenicity and reveal a novel aspect of the bacterial gamma-glutamyl transpeptidase function.  相似文献   

19.
The Helicobacter pylori infection of gastric mucosa is one of the most common infectious diseases and is associated with a variety of clinical outcomes, including peptic ulcer disease and gastric cancer. Helicobacter pylori-induced damage to gastric mucosal cells is controlled by bacterial virulence factors, which include VacA and CagA. Outer membrane vesicles are constantly shed by the bacteria and can provide an additional mechanism for pathogenicity by releasing non-secretable factors which can then interact with epithelial cells. The present report shows that external membrane vesicles are able to induce apoptosis not mediated by mitochondrial pathway in gastric (AGS) epithelial cells, as demonstrated by the lack of cytochrome c release with an activation of caspase 8 and 3. Apoptosis induced by these vesicles does not require a classic VacA+ phenotype, as a negative strain with a truncated and therefore non-secretable form of this protein can also induce cell death. These results should be taken into account in future studies of H. pylori pathogenicity in strains apparently VacA-.  相似文献   

20.
Conserved bacterial components potently activate host immune cells through transmembrane Toll-like receptors (TLRs), which trigger a protective immune response but also may signal apoptosis. In this study, we investigated the roles of TLR2 and TLR4 as inducers of apoptosis in Yersinia enterocolitica-infected macrophages. Yersiniae suppress activation of the antiapoptotic NF-kappaB signaling pathway in host cells by inhibiting inhibitory kappaB kinase-beta. This leads to macrophage apoptosis under infection conditions. Experiments with mouse macrophages deficient for TLR2, TLR4, or both receptors showed that, although yersiniae could activate signaling through both TLR2 and TLR4, loss of TLR4 solely diminished Yersinia-induced apoptosis. This suggests implication of TLR4, but not of TLR2, as a proapoptotic signal transducer in Yersinia-conferred cell death. In the same manner, agonist-specific activation of TLR4 efficiently mediated macrophage apoptosis in the presence of the proteasome inhibitor MG-132, an effect that was less pronounced for activation through TLR2. Furthermore, the extended stimulation of overexpressed TLR4 elicited cellular death in epithelial cells. A dominant-negative mutant of Fas-associated death domain protein could suppress TLR4-mediated cell death, which indicates that TLR4 may signal apoptosis through a Fas-associated death domain protein-dependent pathway. Together, these data show that TLR4 could act as a potent inducer of apoptosis in macrophages that encounter a bacterial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号