首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evoked potentials (EP) of the cerebellar cortex in response to stimulation of peripheral nerves are characterized by a two-phase positive-negative oscillation of the potential having a latent period of 10–25 msec. The electropositive phase can contain up to three components. The latent period of component I comprises 3–9 msec. The latent period and amplitude of this component are distinguished by considerable stability, which indicates the predominant significance of presynaptic processes in its formation. The sign of component II changes at a depth of 500 µ (and more), which corresponds to the position of the granular cell layer. At this level there arises in the neurons a response with a latent period of 4–10 msec in the form of a group (3–10) of impulses with a frequency of up to 200 per sec. It is concluded that the granular cells participate in the formation of component II and partially participate in the formation of components I and III of the EP. Responses to stimulation of the nerves appear synchronously with the EP in 24% of responding Purkinje cells; they fall on the maximum electropositive deviation or component III of the EP. Microinjections of 1% strychnine into the cerebellar cortex cause an increase of EP amplitude; impulse activity of the neurons is intensified. This indicates participation of postsynaptic processes in the formation of EP. No shifts in the EP of the cerebellar cortex were observed after intracortical injection of 0.1% atropine.N. I. Pirogov Vinnitsa Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 429–433, July–August, 1970.  相似文献   

2.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

3.
Recovery curves of evoked potentials in the association and visual cortex during paired stimulation of the pulvinar in chronic experiments on alert cats were shown to be similar in character. Depression of the test response was observed only if the interval between stimuli was of the order of 10 msec, but if it was 40 msec considerable (2–4 times) facilitation of the second response was observed, mainly on account of an increase in the negative component N1. Facilitation was less marked if the intervals were from 60 to 100 msec, and they decreased gradually to an interval of 200 msec. The recovery curve of cortical evoked potentials during paired stimulation of the lateral geniculate body differed considerably from the recovery curve during paired stimulation of the pulvinar and was characterized by a gradual increase in amplitude of the second response — from its almost total suppression with an interval of 10 msec to slight facilitation with an interval of 200 msec. If intervals of 10 to 80 msec were used, the test response was restored more slowly in the association cortex than in the visual cortex. The results are discussed from the standpoint of differences in the character of intracortical spread of excitation as a result of activation of geniculo-cortical and pulvinar-cortical pathways of conduction of information.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 497–505, July–August, 1984.  相似文献   

4.
A comparative analysis of the polysensory properties of 102 neurons in areas 39 and 41 (the associative and auditory cortices, respectively) was performed in acute experiments on rats under chloralose-nembutal anesthesia. In the auditory cortex, the evoked potentials (EP) recorded from the surface of the above area in response to acoustic tonal, electrical cutaneous, and light stimulations almost always were distinguished by their shorter (4–5 msec) latency and higher amplitude. We studied neurons in both areas; their responses to the pure tones of various frequencies and to the stimulations of other modalities were compared. Bi- and polysensory neurons constituted 56.4% in area 39, and only 23% in area 41. The depth distribution of the responding neurons in areas 39 and 41 was different. Neurons with selective sensitivity to different frequencies of tonal signals were found in both areas. Usually monomodal neurons demonstrated selective properties in the auditory cortex, and 70% of them had a characteristic frequency. Over one-half of polymodal cells were frequency-selective in the associative cortex.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 223–229, May–June, 1994.  相似文献   

5.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

6.
Experiments on unanesthetized rats immobilized with D-tubocurarine showed that electrical stimulation (100/sec) of the central gray matter and the mesencephalic and medullary reticular formation considerably depressed potentials in the somatic thalamic relay nucleus and somatosensory cortex evoked by stimulation of the forelimb or medial lemniscus. The mean threshold values of the current used for electrical stimulation of these structures did not differ significantly and were 70 (20–100), 100 (20–120), and 120 (50–200) µA, respectively. On comparison of the amplitude-temporal characteristics of inhibition of evoked potentials during electrical stimulation of the above-mentioned structures by a current of twice the threshold strength, no significant differences were found. Immediately after the end of electrical stimulation the amplitude of the cortical evolved potential and the post-synaptic components of the thalamic evoked potential was 50–60% (P<0.01) below the control values. The duration of this depression varied from 0.5 to 1 sec. An increase in the intensity of electrical stimulation of brain-stem structures to between three and five times the threshold led to depression of the presynaptic component of the thalamic evoked potential also. Depression of the evoked potential as described above was found with various ratios between the intensities of conditioning and testing stimuli.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 467–475, September–October, 1976.  相似文献   

7.
Spike activity was investigated in limbic cortex neurons during defensive conditioning to acoustic stimulation in chronic experiments on cats. A relationship was found between the numbers of neurons responding, their contribution to formation of a temporal connection, and the duration of the acoustic stimulus. Phasic responses of 50–500 msec duration with latencies of 15–50 msec were observed for the most part. Intensive spike response with a minimum latency of 15 msec and a duration of between 200 msec and 2.5 sec evolved in most cells (95.1% in field 24 and 83% in field 32) in response to electrical stimulation. Response to acoustic stimulation rose during defensive conditioning in 33.3% cells and declined and finally disappeared in 13.3%, but response at the site where reinforcement was abolished was reproduced in all these cells. It was thus found that the numbers of limbic cortex neurons responding to sound not only fails to increase but actually decreases after training. The limbic cortex is thought to play its most active part in conditioning response to a recognized signal during the period preceding the awaited painful reinforcement.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 660–669, September–October, 1986.  相似文献   

8.
Evoked potentials (EP) and neuronal responses produced by tooth pulp stimulation and a clicking sound were recorded at different hippocampal sites using microelectrodes in unrestrained rats. Spatial distribution of EP was found to be the same for both types of stimulation. Averaged EP consisted of a high amplitude negative preceded by a low-amplitude positive component (N1 and P1, respectively). Latency of the N1 wave reached its minimum (of 27 msec) at the middle third of the molecular layer of the dentate gyrus and the outer portion of the CA3 apical dendrites. Latency of N1 was considerably longer in the stratum radiatum layer of the CA1. Laminar profiles of the amplitude of the N1 componenent of EP produced in the dentate gyrus and the CA3 by tooth pulp stimulation resemble those observed during perforant path stimulation; in the CA1 they are similar to those evoked by stimulating the Schaffer collaterals. Maximum amplitude of the P1 component was observed above the pyramidal layer of the CA1 and the hilus. Neuronal discharge pattern changed in all hippocampal regions under the effects of both tooth pulp stimulation and the clicking sound. It is deduced that information can reach the hippocampus by two routes: via a "fast" (inhibitory) pathway through the fimbria and the fornix and a slower (excitatory) path through the entorhinal cortex.P. Flexig Institute for Brain Research, Karl Marx University, Leipzig, DR. Institute of Physiology, Pecs University Medical School, Pecs, Hungary. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 36–46, January–February, 1987.  相似文献   

9.
Focal evoked potentials arising in the rabbit visual cortex in response to photic stimulation from a point source were analyzed by determination of the current source density. The response to a point stimulus arises in a circumscribed area of cortex, corresponding retinotopically to the stimulated point of the visual field and it consists of two components. The first component is created by a local current sink at a depth of 0.6 to 1.0 mm (the level of layer IV) and has a latent period of 30 msec and a peak time of 50 msec. The second component is created by a more diffuse current sink at a depth of 0.2–0.3 to 1.3–1.5 mm (levels between layers III and VI); the time to the maximum was 90–100 msec. These local sinks are regarded as active, created by depolarizing synapses. Passive current sources are concentrated around zones of active sinks. The two components of the response may reflect two consecutive waves of activation of cortical neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 474–481, September–October, 1981.  相似文献   

10.
Cortical evoked potentials and extracellular evoked neuronal activity have been investigated in unanesthetized d-curarine immobilized rats during stimulation of the superior colliculi. The focus of responses was found in the lateral part of the visual neocortex (area 18a according to Krieg [5]). The evoked potential includes a negative and subsequent positive waves, its latency being equal to 7.9 +/- 2.8 msec. With deepening the electrode the amplitude of the response decreases, although its polarity remains unchanged. The neuronal activity is of phasic character. During simultaneous record of the evoked potentials and neuronal activity, temporal correlation between impulse activity and the ascending part of the main negative wave of the EP is observed. The data obtained indicate imcomplete overlapping of the retino-geniculo-cortical and retino-tecto-thalamo-cortical channels in the visual system of rats.  相似文献   

11.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

12.
Stimulation of the infraorbital nerve at strengths 1.4–2.5 times higer than the threshold of excitation of A fibers in cats anesthetized with chloralose and pentobarbital evoked EPSPs with an amplitude up to 3.0 mV and a duration of 9–15 msec in 69% of masseter motoneurons after 1.5–3.0 msec. These EPSPs were complex and formed by summation of simpler short-latency and long-latency EPSPs. The short-latency EPSPs appeared in response to infraorbital nerve stimulation at 1.1–1.5 thresholds and had a slow rate of rise (2.5–4.5 msec, mean 3.7±0.4 msec), low amplitude (under 2.0 mV), and short duration (5–6 msec). Their latent period varied from 1.5 to 3.0 msec (mean 2.1±0.2 msec). The shortness of the latent period and its constancy during stimulation of the nerve at increasing strength, and also the character of development of facilitation and inhibition of the EPSP during high-frequency stimulation suggests that these EPSPs are monosynaptic. The slow rate of rise suggested that these EPSPs arise on distal dendrites of the motoneurons. Long-latency EPSPs appeared 7–9 msec after stimulation of the infraorbital nerve at 1.1–1.5 thresholds. Their amplitude reached 1.5–2.0 mV and their duration 7–9 msec. The long duration of the latent period combined with low ability to reproduce high-frequency stimulation (up to 30/sec) points to the polysynaptic origin of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 583–591, November–December, 1977.  相似文献   

13.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

14.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

15.
Temporal characteristics of motor responses evoked in unanesthetized cats by stimulation of the motor cortex through bipolar needle electrodes were investigated in chronic experiments. Isometric and isotonic contractions of the flexor muscles of the hip and knee joints of the limb contralateral to the point of stimulation were recorded. The latent period of response varied from 100 msec or more in the case of low-frequency (100–150 Hz) and low-threshold (1.1–1.2 thresholds) stimulation of the motor cortex to 30–35 msec in the case of "optimal" parameters of stimulation (300–400 Hz, 1.5–1.6 thresholds). If the intensity of stimulation was high enough the rising time constant of evoked contraction was 50–80 msec; values of the falling time constant of muscular contraction after cessation of stimulation were much greater, namely 150–300 msec. The rising time constant of contraction decreased with an increase in both the frequency and strength of motor cortical stimulation. The results are examined and discussed from the standpoint of methods of automatic control theory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 451–458, September–October, 1980.  相似文献   

16.
Unit responses in area 17 of the visual cortex to stimulation of the lateral geniculate body and optic tract were studied in experiments on unanesthetized cats immobilized with D-tubocurarine. Of the neurons tested, 53.6% responded to stimulation of the lateral geniculate body. In 92% of these cells the responses were orthodromic with latent periods of between 2 and 12.5 msec. Most cells responded with latent periods of 2.0–2.5, 3.0–3.5, and 4.0–4.5 msec, corresponding to latent periods of the components of the electropositive wave of the primary response. Antidromic responses to stimulation of the lateral geniculate body were given by 8% of neurons. The difference between the latent periods of responses of the same visual cortical neurons to stimulation of the optic tract and lateral geniculate body was 0.1–1.8 msec, but for most neurons (55.8%) it was 0.5–1 msec. The histograms of response latencies of visual cortical neurons to stimulation of the above-mentioned formations were found to be similar. It is concluded that the optic radiation contains three principal groups of fibers with conduction velocities of 28.5–16.6, 11.7–8.9, and 7.4–6.0 m/sec, respectively.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 589–596, November–December, 1975.  相似文献   

17.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

18.
In an experiment on albino rats with electrodermal stimulation of the forepaw evoked potentials (EP) in the neostriatum (NS), the cortical primary response (PR), and impulse reactions of neurons (mainly of layers V and VI of the cortex) were recorded. The zone of leading-off of the potentials in the cortex was subjected to local surface cooling, which led to an increase in the PR amplitude. This facilitation was accompanied by a change in the time parameters of the impulse reactions of the cortical neurons: the latency and duration increased, and a rhythmic organization of activity appeared or intensified (if it was already present). The increase in the PR amplitude and number of spikes in the response of the cortical neurons to stimulus presentation was far less intensive than the sharp increase in EP amplitude in the NS, and did not correspond to it fully in time. The data suggest that the activating influence of the corticofugal signal on EP in the NS is determined not so much by the intensity of the descending signal as by its temporal organization.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 181–189, March–April, 1991.  相似文献   

19.
Activity of 112 neurons of the precruciate motor cortex in cats was studied during a forelimb placing reaction to tactile stimulation of its distal parts. The latent period of response of the limb to tactile stimulation was: for flexors of the elbow (biceps brachii) 30–40 msec, for the earliest reponses of cortical motor neurons about 20 msec. The biceps response was observed 5–10 msec after the end of stimulation of the cortex with a series of pulses lasting 25 msec. Two types of excitatory responses of the neurons were identified: responses of sensory type observed to each tactile stimulation of the limb and independent of the presence or absence of motion, and responses of motor type, which developed parallel with the motor response of the limb and were not observed in the absence of motion. The minimal latent period of the responses of motor type was equal to the latent period of the sensory responses to tactile stimulation (20±10 msec). Stimulation of the cortex through the recording microelectrode at the site of derivation of unit activity, which increased during active flexion of the forelimb at the elbow (11 stimuli at intervals of 2.5 msec, current not exceeding 25 µA), in 70% of cases evoked an electrical response in the flexor muscle of the elbow.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 115–123, March–April, 1977.  相似文献   

20.
Dovgalets  G. V.  Tal'nov  A. N. 《Neurophysiology》2004,36(3):207-217
We recorded electromyographic (EMG) reactions from the flexors of the elbow joint and evoked potentials (EP) from the somatic cortex (fields 3, 4, and 6) of unanesthetized cats. These reactions were elicited by perturbation of an external extensor loading applied to the arm and evoking passive extension of the elbow joint. Perturbation of the loading was performed in two modes: (i) with different fixed force moments within a 0.04–0.2 N·m range, but with a constant rate of change in this moment (3.2 N·m·sec–1), and (ii) with a constant force moment magnitude (0.2 N·m), but with different rates of change in this moment (from 0.1 to 6.4 N·m·sec–1). When the elbow joint was passively extended, an EMG response was generated in the m. biceps brachii. The amplitude of this response correlated with the amplitude of perturbation of the external loading, and the time course of the response was rather close to that of the evoked passive moment. It was possible to differentiate several (up to seven) successive components in EP recorded from the three above-mentioned cortical fields; among them, the component N(50–60) was the most stable and clearly manifested. Its amplitude did not depend on the level of external loading and decreased with a decrease in the rate of loading perturbation. The time course of the N(50–60) changed insignificantly with variation of temporal parameters of the stimulus and of the evoked movement. We conclude that the spinal level and the cortical level responsible for formation of the stretch reflex differ significantly from each other in their functional roles. Reactions of the spinal level (which could be characterized by changes in EMG) are to a greater extent related to a change in the position of the limb link, while reactions of the cortical level (EP) are determined by the arrival of information about changes in the forces applied to the joint. Neurons of the somatic cortex, which are excited in the course of the stretch reflex, cannot be considered the main source responsible for generation of the M2 component of the myographic response. It is supposed that the cortical level predetermines the formation of non-reflex motor commands related to motor reflexes closed in the somatic brain cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号