首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recorded the times of flowering, fruiting, and leafing for ten native canopy and subcanopy trees and shrubs (monthly from December 1994 through December 1997) in a montane cloud forest with relatively aseasonal rainfall on the island of Maui, Hawaii. These species represented the great majority of individual woody plants at the site. Flowers and fruits were available in the community year–round; however, all species exhibited annual patterns of flowering, and four species showed annual patterns of fruiting while the rest fruited in supra–annual patterns. Many species had protracted flowering or fruiting peaks, and some bore small numbers of flowers or fruit year‐round. Most species flowered in a monthly peak mainly between May and August, corresponding to the period of greatest solar irradiance and marginally higher temperatures. Fruit ripening followed at varying intervals. In contrast, the heaviest flowering occurred between November and March, resulting from bloom of the dominant tree, Metrosideros polymorpha. At the highest elevations, Metrosideros flowering was heaviest during September, but peak flowering of lower elevation trees occurred in late fall and winter. Two forms of this species differed in their temporal and spatial patterns of flowering. For M. polymorpha var. polymorpha and var. incana, bloom peaked annually between November and January; however, for M. polymorpha var. glaberrima, flowering peaked from April through July, with an earlier secondary peak in January.  相似文献   

2.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

3.
Aim We analyse the proximate causes of the large variation in flowering periodicity among four tropical dry forests (TDF) and ask whether climatic periodicity or biotic interactions are the ultimate causes of flowering periodicity. Location The four TDFs in Guanacaste (Costa Rica), Yucatan, Jalisco and Sonora (Mexico) are characterized by a 5–7 month long dry season and are located along a gradient of increasing latitude (10–30°N). Methods To dissect the differences in flowering periodicity observed at the community level, individual tree species were assigned to ‘flowering types’, i.e. groups of species with characteristic flowering periods determined by similar combinations of environmental flowering cues and vegetative phenology. Results Large variation in the fraction of species and flowering types blooming during the dry and wet season, respectively, indicates large differences in the severity of seasonal drought among the four forests. In the dry upland forests of Jalisco, flowering of leafless trees remains suppressed during severe seasonal drought and is triggered by the first rains of the wet season. In the other forests, leaf shedding, exceptional rainfall or increasing daylength cause flowering of many deciduous species at various times during the dry season, well before the summer rains. The fraction of deciduous species leafing out during the summer rains and flowering when leafless during the dry season is largest in the Sonoran TDF. Main conclusions In many wide‐ranging species the phenotypic plasticity of flowering periodicity is large. The distinct temporal separation of spring flowering on leafless shoots and subsequent summer flushing represents a unique adaptation of tree development to climates with a relatively short rainy season and a long dry season. Seasonal variation in rainfall and soil water availability apparently constitutes not only the proximate, but also the ultimate cause of flowering periodicity, which is unlikely to have evolved in response to biotic adaptive pressures.  相似文献   

4.
This paper examines the mean flowering times of 11 plant species in the British Isles over a 58-year period, and the flowering times of a further 13 (and leafing time of an additional 1) for a reduced period of 20 years. Timings were compared to Central England temperatures and all 25 phenological events were significantly related (P<0.001 in all but 1 case) to temperature. These findings are discussed in relation to other published work. The conclusions drawn from this work are that timings of spring and summer species will get progressively earlier as the climate warms, but that the lower limit for a flowering date is probably best determined by examining species phenology at the southern limit of their distribution. Received: 21 October 1999 / Revised: 27 January 2000 / Accepted: 27 January 2000  相似文献   

5.
In southern Africa, Aloe marlothii flowers during the dry winter season and offers copious dilute nectar to a variety of birds. Avian abundance and community composition were monitored at an A. marlothii forest at Suikerbosrand Nature Reserve, South Africa. Sampling occurred during two summer months (February–March) when no flowers were present, and six months (May–October) that spanned the winter flowering. We hypothesized that an influx of occasional nectarivores to the A. marlothii forest during flowering would lead to significant changes in the avian community. Overall bird abundance increased 2–3 fold at the peak of nectar availability (August). We recorded 38 bird species, of 83 species detected during transects, feeding on A. marlothii nectar; this diverse assemblage of birds belonged to 19 families, including Lybiidae, Coliidae, Pycnonotidae, Sylviidae, Cisticolidae, Muscicapidae, Sturnidae, Ploceidae and Fringillidae. Surprisingly, only two species of sunbird (Nectariniidae) were observed feeding on A. marlothii nectar, and both occurred in low abundance. We predicted that competition for nectar resources would be high, but few aggressive inter- and intra-specific interactions occurred between birds while feeding on inflorescences. During peak flowering, insect feeders (insectivores, omnivores, nectarivores) fed on nectar during the cold morning when insect activity was low, whilst non-insect feeders (frugivores and granivores) fed on nectar in the middle of the day. Our study highlights the importance of A. marlothii nectar as a seasonal food and water source for a diverse assemblage of occasional nectarivores.  相似文献   

6.
Leaf phenology varies markedly across tree species of temperate deciduous forests. Early leafing in spring may increase light capture and carbon gain prior to canopy closure, allowing saplings to survive in understory sites deeply shaded in midsummer. We quantified sapling leaf phenology for 18 tree species and seasonal variation in understory light availability at three sites along a ridge-slope-cove landform gradient in the Great Smoky Mountains National Park. Early leafing species (e.g., Aesculus flava, Carpinus caroliniana) broke bud an average of 24 d before late leafers (e.g., Magnolia fraseri, Nyssa sylvatica). Canopy closure occurred 14-18 d earlier and summer understory light was on average 63-74% lower on intermediate and mesic sites than on the xeric site. Early leafing species intercepted 45-80% of their growing season photon flux before canopy closure vs. 8-15% for late leafers. However, earlier leafing increased exposure to freezing temperatures by 5.5% per week near the mean time of bud break. Early leafing is strongly correlated with midsummer shade, risk of freezing temperatures, and distribution on mesic sites across a "main spectrum" of 15 deciduous species. Differences in leaf phenology and resultant impacts on spring carbon gain may help determine tree shade tolerance and distribution in southern Appalachian forests.  相似文献   

7.
Leaf and fig phenology (including leafing, flowering, and fruiting) and syconium growth of Ficus racemosa were studied in Xishuangbanna, China. Leaffall and flushing of F. racemosa occurred twice yearly: in mid‐dry season (December to March) and mid‐rainy season (July to September). The adult leaf stage of the first leaf production was remarkably longer than that of the second. F. racemosa bears syconia throughout the year, producing 4.76 crops annually. Asynchronous fig production was observed at a population level. Fig production was independent of leafing. Fig production peaks were not evident, but fluctuation was clear. Diameter growth rates of syconium were normally higher in early developmental stages than in later stages, and reached a peak coinciding with the female flower phase. The mean ± SD of syconium diameter of the female flower phase was 2.19 ± 0.36 cm, and reached 3.67 ± 0.73 cm of the male flower phase. Syconium diameter and receptacle cavity quickly enlarged at the female and male flower phases. Monthly diameter increment of the syconium was primarily affected by average monthly temperature, rather than rainfall or relative humidity.  相似文献   

8.
Tébar  F.J.  Gil  L.  Llorens  L. 《Plant Ecology》2004,174(2):295-305
A study of the flowering and fruiting phenology was undertaken for twenty species of the xerochamaephytic communities that characterize the mountain-crest areas of the island of Majorca (Balearic Islands, Spain). The flowering period of the species considered extends from March to November, with the majority flowering during the spring and early summer, and a peak in June. The flowering duration at the species level is longest for Rosmarinus officinalis var. palaui (which flowered in spring and autumn) and was shortest for Genista majorica and Rubia balearica. In this community, three strategies were observed that may serve to reduce interspecific competition between pollinators: 1) pollination specialization of white-pink flowers; 2) high diversification of yellow flower pollinators; and 3) the divergence in flowering time of less common flower colours. The flowering duration of individual plants and whole populations are positively correlated, which may indicate that individuals of each population optimize the time which is phenologically useful. The flowering of the spiny cushion species of the community is characterized by a smaller intraspecific overlap in comparison to the other species examined. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Variation in annual flowering effort is described for 16 long datasets from 11 species of Chionochloa (Poaceae) in New Zealand. All populations exhibited extreme mast seeding. The most variable species was C. crassiuscula (coefficient of variation, CV=3.02) over 26 years at Takahe Valley, Fiordland, which is the highest published CV we know of worldwide. The other populations also had high CVs (lowest CV=1.42, mean CV=1.84) which were higher than for other well‐studied genera such as Picea, Pinus and Quercus. There were also frequent years of zero flowering (mean across all populations was 37.2% zero years; maximum 53% for C. rubra and C. crassiuscula over 19 years) whereas zero years are rare in other published masting datasets.Flowering was highly synchronous among species within a site (mean r=0.886), and also (though significantly less so) among sites. Among sites, synchrony was not significantly higher within‐species (mean r=0.711) than between‐species (r=0.690). Warm summer temperatures led to heavy flowering the following summer. Flowering synchrony increased with increasing synchrony in local deseasonalised summer temperatures, and decreased with increasing distance between sites.Mast seeding has been shown in Chionochloa to reduce losses to specialist flower or seed predators. Among‐species synchrony may be adaptive if species share a common seed predator. Developing seeds of at least 10 Chionochloa species are attacked by larvae of an undescribed cecidomyiid. In Takahe Valley, where masting is most pronounced, cecidomyiids attacked all six Chionochloa species in all four years studied. Mean annual losses were almost constant (10.0 to 13.4%) while flowering effort varied 100‐fold. The invariant losses are consistent with other evidence that the cecidomyiid may have extended diapause, which would make it harder to satiate by mast seeding. We hypothesise that one possible factor favouring such extremely high levels of mast seeding in Chionochloa is that its seed predator is very hard to satiate.  相似文献   

10.
BACKGROUND AND AIMS: In the dry tropics, vegetative phenology varies widely with tree characteristics and soil conditions. The present work aims to document the phenological diversity of flowering and fruiting with reference to leafing events in Indian dry-tropical tree species. METHODS: Nine tree species, including one leaf-exchanging and eight deciduous showing varying leafless periods, were studied. Monthly counts of leaves, flowers and fruits were made on 160 tagged twigs on ten individuals of each species for initiation, completion and duration of different phenological events through two annual cycles. KEY RESULTS: Variation in flowering relative to leaf flushing (which occurred just prior to or during a hot, dry summer) revealed five flowering types: summer flowering (on foliated shoots), rainy-season flowering (on foliated shoots following significant rains), autumn flowering (on shoots with mature leaves), winter flowering (on shoots undergoing leaf fall) and dry-season flowering (on leafless shoots). Duration of the fruiting phenophase was shortest (3-4 months) in dry-season and winter-flowering species, 6-9 months in rainy-and autumn-flowering species, and maximum (11 months) in summer-flowering species. A wide range of time lag (<1 to >8 months) between the start of vegetative (first-leaf flush) and reproductive (first-visible flower) phases was recorded in deciduous species; this time lag was correlated with the extent of the leafless period. A synthesis of available phenological information on 119 Indian tropical trees showed that summer-flowering species were most abundant (56 % of total species) amongst the five types recognized. CONCLUSIONS: The wide diversity of seasonal flowering and fruiting with linkages to leaf flush time and leafless period reflect the fact that variable reproductive and survival strategies evolved in tree species under a monsoonic bioclimate. Flowering periodicity has evolved as an adaptation to an annual leafless period and the time required for the fruit to develop. The direct relationship between leafless period (inverse of growing period) and time lag between onset of vegetative and reproductive phases reflects the partitioning of resource use for supporting these phases. Predominance of summer flowering coupled with summer leaf flushing seems to be a unique adaptation in trees to survive under a strongly seasonal tropical climate.  相似文献   

11.
Ralhan  P. K.  Khanna  R. K.  Singh  S. P.  Singh  J. S. 《Plant Ecology》1985,63(3):113-119
The phenology of 49 shrub species in five forest types occurring along an altitudinal gradient (350–2150 m) in Kumaun Himalaya has been studied. The evergreen leaf-exchanging taxa accounted for nearly half of the species, the remaining half was nearly equally divided between an evergreen continual leaf drop type and deciduous taxa. The percentage of species with lengthy leaf drop increased with elevation and finally leveled off. At each site the maximum leaf drop period coincided with the warm dry period. Percentage of species with multiple leaf flushing was low for all forests. The degree of extended leafing decreased with increasing elevation along which summer dryness also decreased. Earliest leaf initiation was observed for evergreen continual leaf drop species, followed by evergreen leaf-exchanging, and deciduous types.For each forest, two peaks of flowering activity occurred, one during the warm dry period and the other in the warm wet period. The percentage of species with multiple flowering increased with increasing elevation. Nearly half of the species bore fleshy fruits. The mature fruit retention period for different forests ranged from about 2–3 months.The proportion of deciduous species was similar in trees and shrubs; leaf drop was common during the summer season for trees, while it was common during the winter season for shrubs; the proportion of species with multiple leafings was greater and leaf initiation earlier in shrubs than trees; and generally shrubs showed two flowering peaks and trees only one.Nomenclature follows Osmaston (1926).Financial support from the Gaula Catchment Eco-development project and the Department of Science and Technology, Government of India, is gratefully acknowledged. We thank Dr. Y. P. S. Pangtey for his help in plant identification.  相似文献   

12.
Apis cerana japonica Radoszkowski, endemic to Japan, is known to be one of the most important pollinators for wild plants and crops, such as buckwheat, in cool to warm temperate Japan. To determine the degree of dependence of A. cerana japonica on forest resources, we analyzed pollen brought back to nests in a typical “Satoyama” landscape with relatively high deciduous forest coverage in northern Japan. We divided the landscape elements of the study area into three types: deciduous forest, conifer plantation and open land according to landcover digital data, and each pollen taxon was assigned to one of these three types of landscape elements. We collected total pollen loads of 15.75 g (total of colonies A and B) in May (spring), 1.57 g (total of colonies A and C) in June (early summer), 19.03 g (total of colonies A, B and C) in July (mid‐summer) and 45.61 g (total of colonies A, B and D) in September (autumn). Deciduous forests are the most important foraging habitats for A. cerana japonica in the “Satoyama” landscape especially from spring to mid‐summer when mass flowering of tall trees and shrubs species provides rich floral resources for developing bee colonies. On the other hand, the bees frequently foraged from herbaceous plant species in autumn when flowering of tree species reduces and herbaceous plant species have flowering peaks. In turn, the bees provide pollination services to a number of wild flowers blooming in various forest layers ranging from the canopy to the understory layer.  相似文献   

13.
To relate differences in phenological strategies of a group of closely related plants to biotic (pollinators, dispersers) and abiotic (water, light) factors, we studied leafing, flowering, and fruiting phenology of 12 species of Piper (Piperaceae) in a neotropical lowland forest in Panama for 28 months. We asked how Piper may partition time and vertebrate frugivores to minimize possible competition for dispersal agents. Based on habitat preferences and physiological characteristics we discriminate between forest Piper species (eight species) and gap Piper species (four species). Forest Piper species flowered synchronously mostly at the end of the dry season. Gap Piper species had broader or multiple flowering peaks distributed throughout the year with a trend towards the wet season. Both groups of Piper species showed continuous fruit production. Fruiting peaks of forest Piper species were short and staggered. Gap Piper species had extended fruiting seasons with multiple or broad peaks. Both groups of Piper species also differed in their time of ripening and disperser spectrum. Forest Piper species ripened in late afternoon and had a narrow spectrum consisting mainly of two species of frugivorous bats: Carollia perspicillata and C. castanea (Phyllostomidae). Fruits of gap Piper species, in contrast, ripened early in the morning and were eaten by a broader range of diurnal and nocturnal visitors, including bats, birds, and ants. We conclude that the differences in flowering phenology of forest and gap Piper species are primarily caused by abiotic factors, particularly the availability of water and light, whereas differences in fruiting patterns are mostly influenced by biotic factors. The staggered fruiting pattern of forest Piper species may reflect competition for a limited spectrum of dispersers. The long and overlapping fruiting periods of gap Piper species are associated with a larger spectrum of dispersers and may be a strategy to overcome the difficulty of seed dispersal into spatially unpredictable germination sites with suitable light conditions.  相似文献   

14.
We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts.  相似文献   

15.
In a field experiment we studied the relationships between architecture, seasonal aerial biomass growth and interference from neighbours in three savanna grass species differing in time of flowering: a precocious species (Elyonurus adustus), an early species (Leptocoryphium lanatum) and a late species (Andropogon semiberbis). To detect the neighbour interference upon architecture and seasonal regrowth, we measured the leaf interception of a plane at different heights, when the species grew alone, in pairs and in groups of three. Although the three species differed widely in the spatial and temporal patterns of occupation of above-ground space, important levels of interference among neighbouring plants were detected. The species differ in: a) the pattern of space occupation when growing alone; b) the magnitude of the interference effect by the companion species; c) the change in pattern as a consequence of interference; d) their reaction to fire.The interference is not symmetric and it is not related to phenological similarities based on flowering season.L. lanatum was both the most impaired and the least impairing of the three species and the opposite is valid forA. semiberbis. The basal species (E. adustus andL. lanatum) showed a higher potential to produce leaf surface during the growth season than the tall species (A. semiberbis), but the stronger interference from the latter tended to equate their growth when the species grew in mixtures.In all three species interference led to a reduction of the growing period. Based on the analysis of growth at the various heights and the architectural peculiarities of the species we concluded that neighbour interference is probably reducing both tillering and leafing in the basal species but only culm elongation and leafing in the erect species.The species also differed in their reaction to fire.A. semiberbis andE. adustus showed a pulse of regrowth after the passing of fire which is missing inL. lanatum. In all cases the neighbour interference affected both the intensity of growth and the length of the growing period, but it did not affect either the height of the plants nor the reproductive phenology of these three grass species.  相似文献   

16.
One of the lesser known effects of global climate change is the occurrence of heat waves. Climatic models predict that heat waves will become more intense, longer lasting and/or more frequent, as a consequence of the increased inter‐annual variability and increased average values of summer temperatures. Plants are damaged by heat waves through direct effects of extreme temperatures influencing plant physiology and through indirect effects, like drought and exposure to high ozone concentration. This study investigates the flowering abundance and biomass production of two orophytic species, Alopecurus alpinus Vill. and Vicia cusnae Foggi et Ricceri following the heat wave that occurred in the summer of 2003 and analyses the effects of summer temperatures during the period 1999–2004 on the species reproductive performance. In 2003, we observed a significant decrease in the number of flowering stems and flowers per flowering stem for both species. Flower production reached its lowest value in correspondence to the heat wave in 2003 and Redundancy Analysis showed that flower production was related to the mean June temperature. Flower production was more sensitive than vegetative growth, which was maintained. This suggests that changes in reproductive strategies, e.g. changes in the ratio between sexual and clonal reproduction, may occur by as an effect of extreme weather events. Such changes may be of great importance when the population consists of a small number of flowering individuals, as is the case for A. alpinus and V. cusnae in the study area. As a consequence, although the plants generally responded positively to gradual warming, we found that, during the monitoring period 1999–2004, extreme temperatures had a negative effect on A. alpinus and V. cusnae.  相似文献   

17.
Despite the widespread recognition that urban areas are frequently dominated by exotic and invasive plants, the consequences of these changes in community structure have not been explicitly considered as an explanation for the pattern of advanced leaf phenology, or early greenup, reported in many urban areas. As such, we evaluated two hypotheses that could account for advanced greenup in forests along an urban to rural gradient: advanced phenology within individual species or differences in woody plant community. We monitored the spring leafing phenology of Aesculus glabra (Ohio buckeye), Lonicera maackii (Amur honeysuckle), and Acer negundo (box elder) in 11 forests spanning an urban to rural gradient in central Ohio, USA. From February to April 2006, we monitored these species, recorded woody plant composition, and documented daily minimum and maximum temperatures at each site. We found a weak but general trend of advanced phenology within species in more urban landscapes. Monthly average minimum temperatures were higher with increasing urbanization while monthly average maximum temperatures were similar across the urban to rural gradient. We also found evidence for shifts in woody plant communities along the urbanization gradient, mainly driven by the abundance of L. maackii, an invasive exotic species, in the more urban forests. Because L. maackii leafs out weeks earlier than native woody species and is very abundant in urban forests, we suggest that the invasion of forests by this species can generate earlier greenup of urban forests.  相似文献   

18.
The seasonal dynamics of a community of endomycorrhizal fungal morphotypes in the roots of three grassland species (Achillea millefolium, Poa angustifolia, Plantago lanceolata) was evaluated, together with the effects of experimental treatment (mowing and phosphorus application) and the host plant properties. Strong seasonal variability was found in the fungal community, where clear seasonal patterns can be distinguished for several fungal morphotypes. The sampling date explained 20 to 30% of the total compositional variability for all three host species. ThePlantago roots host the highest number of arbuscular mycorrhizal (AM) fungal populations. There are two co-dominant fungal morphotypes inAchillea roots (assigned to the generaScutellospora andGlomus) and only one strongly dominant morphotype (assigned toGlomus), in thePoa roots. All three host species have a comparable pattern of richness of AM morphotypes with a single peak in the summer, possibly aligned with the flowering time of the host.  相似文献   

19.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

20.
Studies evaluating flowering phenology and reproductive success are necessary when we want to direct a domestication project in a species with a potential productive value. We studied flowering phenology and reproductive success of Berberis darwinii growing under different light conditions in its native distribution area in the Andean Patagonian forests of Argentina. We test the hypothesis that plants grown under conditions of high-light availability exhibit advanced phenology and higher reproductive success than those grown under conditions of lower light availability. Phenology and reproductive success were determined in three contrasting light conditions at two forest sites, which were, canopy, gap and forest edge. Plants did not bloom under the forest canopy. Flowering and fruiting period lengths were similar in both sites and light conditions of gap and forest edge during spring and summer. Although gap plants had more racemes per shoot, racemes of edge plants had more flowers, fruits and a higher proportion of flowers producing ripe fruit. We show that B. darwinii reproduction studied in the Andean Patagonian forests is conditioned by the canopy openness. Regarding reproductive success, edge plants invest less resources in flower production than gap plants to have similar fruit production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号