首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cAMP-dependent protein kinase anchoring protein, d-AKAP1, has two N-terminal splice variants. The shorter forms (N0, d-AKAP1a, and -1c) target to mitochondria, and the longer forms (N1, d-AKAP1b, and -1d) with 33 additional residues N-terminal to N0 target to the endoplasmic reticulum (ER) (Huang, L. J., Wang, L., Ma, Y., Durick, K., Perkins, G., Deerinck, T. J., Ellisman, M. H., and Taylor, S. S. (1999) J. Cell Biol. 145, 951-959). In d-AKAP1a, translation may initiate from both Met-34 or Met-49 producing two molecules both targeted to mitochondria. The shorter molecule contains the 15-residue targeting motif, homologous to the N-terminal mitochondrial targeting motif of hexokinase I. Extensive mutagenesis showed that one hydrophobic surface of the 15-residue hexokinase-homologous segment contained the key elements for mitochondrial targeting. The same 15 residues are also part of the ER-targeting signal, but for ER targeting multiple hydrophobic residues are required that encompass both surfaces of the helix. The different involvement of the same helical motif for targeting to the two organelles appears to reflect different modes of interaction with the two organelles. This is the first example of a bifunctional helical element that is required for both ER and mitochondrion targeting.  相似文献   

3.
Spermatozoa are highly polarized cells with specific metabolic pathways compartmentalized in different regions. Previously, we hypothesized that glycolysis is organized in the fibrous sheath of the flagellum to provide ATP to dynein ATPases that generate motility and to protein kinases that regulate motility. Although a recent report suggested that glucose is not essential for murine sperm capacitation, we demonstrated that glucose (but not lactate or pyruvate) was necessary and sufficient to support the protein tyrosine phosphorylation events associated with capacitation. The effect of glucose on this signaling pathway was downstream of cAMP, and appeared to arise indirectly as a consequence of metabolism as opposed to a direct signaling effect. Moreover, the phosphorylation events were not affected by uncouplers of oxidative respiration, inhibitors of electron transfer, or by a lack of substrates for oxidative respiration in the medium. Further experiments aimed at identifying potential regulators of sperm glycolysis focused on a germ cell-specific isoform of hexokinase, HK1-SC, which localizes to the fibrous sheath. HK1-SC activity and biochemical localization did not change during sperm capacitation, suggesting that glycolysis in sperm is regulated either at the level of substrate availability or by downstream enzymes. These data support the hypothesis that ATP specifically produced by a compartmentalized glycolytic pathway in the principal piece of the flagellum, as opposed to ATP generated by mitochondria in the mid-piece, is strictly required for protein tyrosine phosphorylation events that take place during sperm capacitation. The relationship between these pathways suggests that spermatozoa offer a model system for the study of integration of compartmentalized metabolic and signaling pathways.  相似文献   

4.
5.
Hb endocytosis in Leishmania is mediated through a 46-kDa protein located in the flagellar pocket. To understand the nature of the Hb receptor (HbR), we have purified the 46-kDa protein to homogeneity from Leishmania promastigote membrane. Purified HbR specifically binds Hb. The gene for HbR was cloned, and sequence analysis of the full-length HbR gene indicates the presence of hexokinase (HK) signature sequences, ATP-binding domain, and PTS-II motif. Four lines of evidence indicate that HbR in Leishmania is a hexokinase: 1) the recombinant HbR binds Hb, and the Hb-binding domain resides in the N terminus of the protein; 2) recombinant proteins and cell lysate prepared from HbR-overexpressing Leishmania promastigotes show enhanced HK activity in comparison with untransfected cells; 3) immunolocalization studies using antibodies against the N-terminal fragment (Ld-HbR-DeltaC) of Ld-HbR indicate that this protein is located in the flagellar pocket of Leishmania; and 4) binding and uptake of (125)I-Hb by Leishmania is significantly inhibited by anti-Ld-HbR-DeltaC antibody and Ld-HbR-DeltaC, respectively. Taken together, these results indicate that HK present in the flagellar pocket of Leishmania is involved in Hb endocytosis.  相似文献   

6.
Y Liu  E J Oakeley  L Sun    J P Jost 《Nucleic acids research》1998,26(4):1038-1045
It has been shown that, during the S-phase of the cell cycle, the mouse DNA methyltransferase (DNA MTase) is targeted to sites of DNA replication by an amino acid sequence (aa 207-455) lying in the N-terminal domain of the enzyme [Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992) Cell , 71, 865-873]. In this paper it is shown, by using enhanced green fluorescent protein (EGFP) fusions, that other peptide sequences of DNA MTase are also involved in this targeting. The work focuses on a sequence, downstream of the reported targeting sequence (TS), which is homologous to the Polybromo-1 protein. This motif (designated as PBHD) is separated from the reported targeting sequence by a zinc-binding motif [Bestor , T. H. (1992) EMBO J , 11, 2611-2617]. Primed in situ extension using centromeric-specific primers was used to show that both the host DNA MTase and EGFP fusion proteins containing the targeting sequences were localized to centromeric, but not telomeric, regions during late S-phase and mitosis. Also found was that, in approximately 10% of the S-phase cells, the EGFP fusions did not co-localize with the centromeric regions. Mutants containing either, or both, of these targeting sequences could act as dominant negative mutants against the host DNA MTase. EGFP fusion proteins, containing the reported TS (aa 207-455), were targeted to centromeric regions throughout the mitotic stage which lead to the discovery of a similar behavior of the endogenous DNA MTase although the host MTase showed much less intense staining than in S-phase cells. The biological role of the centromeric localization of DNA MTase during mitosis is currently unknown.  相似文献   

7.
CLN3 is a transmembrane protein with a predominant localization in lysosomes in non-neuronal cells but is also found in endosomes and the synaptic region in neuronal cells. Mutations in the CLN3 gene result in juvenile neuronal ceroid lipofuscinosis or Batten disease, which currently is the most common cause of childhood dementia. We have recently reported that the lysosomal targeting of CLN3 is facilitated by two targeting motifs: a dileucine-type motif in a cytoplasmic loop domain and an unusual motif in the carboxyl-terminal cytoplasmic tail comprising a methionine and a glycine separated by nine amino acids (Kyttala, A., Ihrke, G., Vesa, J., Schell, M. J., and Luzio, J. P. (2004) Mol. Biol. Cell 15, 1313-1323). In the present study, we investigated the pathways and mechanisms of CLN3 sorting using biochemical binding assays and immunofluorescence methods. The dileucine motif of CLN3 bound both AP-1 and AP-3 in vitro, and expression of mutated CLN3 in AP-1- or AP-3-deficient mouse fibroblasts showed that both adaptor complexes are required for sequential sorting of CLN3 via this motif. Our data indicate the involvement of complex sorting machinery in the trafficking of CLN3 and emphasize the diversity of parallel and sequential sorting pathways in the trafficking of membrane proteins.  相似文献   

8.
9.
We have amplified and sequenced the complete coding region of bovine hexokinase isoenzyme 1 (HK1) from brain RNA with PCR primers selected for sequence conservation. The sequence information was analyzed to evaluate the evolutionary and structure-function relationships among the mammalian and yeast HK isoenzymes. Structure to function analysis identified an unduplicated, invariant N-terminal domain involved in HK1 outer mitochondrial membrane targeting, as well as putative carbohydrate and nucleotide-binding sites in the regulatory and catalytic halves of HK1 essential to enzyme function. The ATP-binding site in the catalytic half of the HK1 protein resembles nucleotide-binding regions from protein kinases, with the single amino acid replacement (lysine to glutamate) in the ATP-binding site of the amino half explaining the loss of HK1 catalytic function in the regulatory domain. Sequence comparisons suggest that the 50-kDa mammalian and yeast glucokinases arose separately in evolution. In addition to providing valuable phylogenetic and structure-function insights, this work provides an efficient strategy for rapid cloning and sequencing of the coding regions for other HKs and related proteins.  相似文献   

10.
Identification of a novel male germ cell-specific gene TESF-1 in mice   总被引:7,自引:0,他引:7  
Mammalian spermatogenesis is precisely regulated by many germ cell-specific factors. In search for such a germ cell-specific factor, we have identified a novel mouse gene testis-specific factor 1 (TESF-1). Messenger RNA of TESF-1 was found only in the testis and its expression appeared to be regulated in a developmental manner. Further analysis demonstrated that the expression of TESF-1 was specifically in male germ cells, supported by the observation that we were not able to detect the TESF-1 mRNA from at/at homozygous mutant testes, which lack germ cells. The deduced amino acid sequence of TESF-1 contains a leucine-zipper motif, a potential nuclear localization signal, and two cAMP- and cGMP-dependent protein kinase phosphorylation sites. The green fluorescent protein (GFP)-tagged TESF-1 fusion protein was expressed in COS-7 cells and localized primarily in the nucleus. Taken together, these results indicate that TESF-1 is a novel male germ cell-specific gene, and its protein product may function as a nuclear factor involved in the regulation of spermatogenesis.  相似文献   

11.
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface. We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodomain of the interleukin-2alpha (IL-2alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK(1) epithelial cells. Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin. Truncation mutants unable to bind beta-catenin were correctly targeted, showing, contrary to current understanding, that beta-catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine-mediated targeting is maintained in LLC-PK(1) cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line. These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.  相似文献   

12.
Enteropeptidase, a type II transmembrane protein of the enterocyte brush border, is sorted directly to the apical membrane of Madin-Darby canine kidney II cells. Apical targeting appears to be mediated by an N-terminal segment that contains a 27-amino acid residue O-glycosylated mucin-like domain consisting of two short mucin-like repeats, A and B. Targeting signals within these repeats were characterized by using green fluorescent protein (GFP) as a reporter. Constructs with a cleavable signal peptide and both repeats A and B were secreted apically. Similar constructs lacking mucin repeats were secreted randomly. Either repeat A or B was sufficient to direct apical targeting of GFP. O-linked oligosaccharides alone were not sufficient for targeting because fusion to a different O-glycosylated motif did not alter the random secretion of GFP, and several constructs with mutations in either repeat A or B were O-glycosylated and secreted randomly. In addition, repeat B appears to contain an apical targeting signal that functions in the absence of glycosylation. Density gradient centrifugation indicated that, unlike several other apically targeted membrane and soluble proteins, apical sorting of mucin-GFP chimeric proteins does not appear to utilize lipid rafts.  相似文献   

13.
The sodium-bicarbonate cotransporter NBC1 is targeted exclusively at the basolateral membrane. Mutagenesis of a dihydrophobic FL motif (residues 1013–1014) in the C-terminal domain disrupts the targeting of NBC1. In the present study, we determined the precise constraints of the FL motif required for basolateral targeting of NBC1 by expressing epitope-tagged wild-type and mutant NBC1 in MDCK cells and RNA-injected Xenopus oocytes and examining their subcellular localization. We assayed the functional activity of the mutants by measuring bicarbonate-induced currents in oocytes. Wild-type NBC1 (containing PFLS) was expressed exclusively on the basolateral membrane in MDCK cells. Reversal of the FL motif (PLFS) had no effect on basolateral targeting or activity. Shifting the FL motif one residue upstream (FLPS) resulted in mistargeting of the apical membrane but the FLPS mutant retained its functional activity in oocytes. Shifting the FL motif one residue downstream resulted in a mutant (PSFL) that did not efficiently translocate to the plasma membrane and was instead colocalized with the ER marker, protein disulfide isomerase (PDI). Analysis of circular dichroism (CD) revealed that a short peptide, 20 amino acid residues, of wild-type NBC1 contained a significant α-helical structure, whereas peptides in which the FL motif was reversed or C-terminally shifted were disordered. We therefore propose that the specific orientation and the precise location of the FL motif in the primary sequence of NBC1 are strict requirements for the α-helical structure of the C-terminal cytoplasmic domain and for targeting of NBC1 to the basolateral membrane.  相似文献   

14.
We have cloned the entire coding region of a mouse germ cell-specific cDNA encoding a unique protein kinase whose catalytic domain contains only three consensus subdomains (I-III) instead of the normal 12. The protein possesses intrinsic Ser/Thr kinase activity and is exclusively expressed in haploid germ cells, localizing only in their nuclei, and was thus named Haspin (for haploid germ cell-specific nuclear protein kinase). Western blot analysis showed that specific antibodies recognized a protein of Mr 83,000 in the testis. Ectopically expressed Haspin was detected exclusively in the nuclei of cultured somatic cells. Even in the absence of kinase activity, however, Haspin caused cell cycle arrest at G1, resulting in growth arrest of the transfected somatic cells. In a DNA binding experiment, approximately one-half of wild-type Haspin was able to bind to a DNA-cellulose column, whereas the other half was not. In contrast, all of the deletion mutant Haspin that lacked autophosphorylation bound to the DNA column. Thus, the DNA-binding activity of Haspin may, in some way, be associated with its kinase activity. These observations suggest that Haspin has some critical roles in cell cycle cessation and differentiation of haploid germ cells.  相似文献   

15.
Batten disease is a neurodegenerative disorder resulting from mutations in CLN3, a polytopic membrane protein, whose predominant intracellular destination in nonneuronal cells is the lysosome. The topology of CLN3 protein, its lysosomal targeting mechanism, and the development of Batten disease are poorly understood. We provide experimental evidence that both the N and C termini and one large loop domain of CLN3 face the cytoplasm. We have identified two lysosomal targeting motifs that mediate the sorting of CLN3 in transfected nonneuronal and neuronal cells: an unconventional motif in the long C-terminal cytosolic tail consisting of a methionine and a glycine separated by nine amino acids [M(X)9G], and a more conventional dileucine motif, located in the large cytosolic loop domain and preceded by an acidic patch. Each motif on its own was sufficient to mediate lysosomal targeting, but optimal efficiency required both. Interestingly, in primary neurons, CLN3 was prominently seen both in lysosomes in the cell body and in endosomes, containing early endosomal antigen-1 along neuronal processes. Because there are few lysosomes in axons and peripheral parts of dendrites, the presence of CLN3 in endosomes of neurons may be functionally important. Endosomal association of the protein was independent of the two lysosomal targeting motifs.  相似文献   

16.
17.
A castor bean (Ricinus communis cv. Hale) cDNA encoding catalase was cloned and sequenced. The cDNA encoding the carboxy-terminal domain of catalase was compared to the corresponding sequences of six other plant catalases. The deduced amino acid sequences were compared according to the chemical attributes of each amino acid within each carboxy-terminal domain. A tripeptide sequence having the chemical attributes of the peroxisomal targeting sequence [Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. & Subramani, S. (1989) J. Cell Biol. 108, 1657-1664] was common to all the glyoxysomal/peroxisomal plant catalases. This sequence motif was located six amino acids from the carboxy terminus of each of the plant catalases. An identical motif was also found within the carboxy-terminal domain of three mammalian catalases previously sequenced. We hypothesize that these motifs are at least part of the targeting mechanism for catalase entry into plant glyoxysomes/peroxisomes.  相似文献   

18.
Oculocutaneous albinism type 2 is caused by defects in the gene OCA2, encoding a pigment cell-specific, 12-transmembrane domain protein with homology to ion permeases. The function of the OCA2 protein remains unknown, and its subcellular localization is under debate. Here, we show that endogenous OCA2 in melanocytic cells rapidly exits the endoplasmic reticulum (ER) and thus does not behave as a resident ER protein. Consistently, exogenously expressed OCA2 localizes within melanocytes to melanosomes, and, like other melanosomal proteins, localizes to lysosomes when expressed in nonpigment cells. Mutagenized OCA2 transgenes stimulate melanin synthesis in OCA2-deficient cells when localized to melanosomes but not when specifically retained in the ER, contradicting a proposed primary function for OCA2 in the ER. Steady-state melanosomal localization requires a conserved consensus acidic dileucine-based sorting motif within the cytoplasmic N-terminal region of OCA2. A second dileucine signal within this region confers steady-state lysosomal localization in melanocytes, suggesting that OCA2 might traverse multiple sequential or parallel trafficking routes. The two dileucine signals physically interact in a differential manner with cytoplasmic adaptors known to function in trafficking other proteins to melanosomes. We conclude that OCA2 is targeted to and functions within melanosomes but that residence within melanosomes may be regulated by secondary or alternative targeting to lysosomes.  相似文献   

19.
20.
We have previously shown that type I procollagen pro-alpha1(I) chains from an osteogenesis imperfecta patient (OI26) with a frameshift mutation resulting in a truncated C-propeptide, have impaired assembly, and are degraded by an endoplasmic reticulum-associated pathway (Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O. and Bateman, J. F. (1995) J. Biol. Chem. 270, 8642-8649). To further explore the degradation of procollagen chains with mutant C-propeptides, mouse Mov13 cells, which produce no endogenous pro-alpha1(I), were stably transfected with a pro-alpha1(I) expression construct containing a frameshift mutation that predicts the synthesis of a protein 85 residues longer than normal. Despite high levels of mutant mRNA in transfected Mov13 cells, only minute amounts of mutant pro-alpha1(I) could be detected indicating that the majority of the mutant pro-alpha1(I) chains synthesized are targeted for rapid intracellular degradation. Degradation was not prevented by brefeldin A, monensin, or NH(4)Cl, agents that interfere with intracellular transport or lysosomal function. However, mutant pro-alpha1(I) chains in both transfected Mov13 cells and OI26 cells were protected from proteolysis by specific proteasome inhibitors. Together these data demonstrate for the first time that procollagen chains containing C-propeptide mutations that impair assembly are degraded by the cytoplasmic proteasome complex, and that the previously identified endoplasmic reticulum-associated degradation of mutant pro-alpha1(I) in OI26 is mediated by proteasomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号