首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The Haemaphysalis longicornis longicin P4 peptide is an active part peptide produced by longicin which displays bactericidal activity against both Gram-negative and Gram-positive bacteria and other microorganisms. In the present study, the effect of the longicin P4 peptide on the infectivity of Toxoplasma gondii parasites was examined in vitro. Tachyzoites of T. gondii incubated with longicin P4 had induced aggregation and lost the trypan blue dye exclusion activity and the invasion ability into the mouse embryonal cell line (NIH/3T3). Longicin P4 bound to T. gondii tachyzoites, as demonstrated by fluoresce microscopic analysis. An electron microscopic analysis and a fluorescence propidium iodide exclusion assay of tachyzoites exposed to longicin P4 revealed pore formation in the cellular membrane, membrane disorganization, and hollowing as well as cytoplasmic vacuolization. The number of tachyzoites proliferated in mouse macrophage cell line (J774A.1) was significantly decreased by incubation with longicin P4. These findings suggested that longicin P4 conceivably impaired parasite membranes, leading to the destruction of Toxoplasma parasites in J774A.1 cells. Thus, longicin P4 is an interesting candidate for antitoxoplasmosis drug design that causes severe toxicity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that longicin P4 causes aggregation and membrane injury of parasites, leading to Toxoplasma tachyzoite destruction.  相似文献   

3.
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.  相似文献   

4.
We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.  相似文献   

5.
6.
During intracellular stay, Toxoplasma gondii secretes dense granule proteins (GRA) which remodel the parasitophorous vacuole and are considered functional in parasite-host interrelation. Comparative analysis of parasites from mouse-virulent strain BK and an in vitro attenuated variant revealed that the level of GRA7 expression correlates with T. gondii virulence: proteome analysis and quantitation by immunoblot demonstrated a massive decrease in GRA7 steady-state synthesis parallel to the loss of virulence. Properties of GRA7 that are pertinent to its membrane targeting and to GRA7-directed immune resistance were studied in detail. GRA7 is exclusively membrane-associated in both parasites and infected host cells as demonstrated by subcellular fractionations. Triton X-114 partitioning of isolated parasites substantiated that GRA7 is an integral membrane protein, the hydrophobic stretch from amino acid 181 to 202 providing a possible membrane anchor. A fraction enriched for membranous material from infected host cells contained additional forms of GRA7 with reduced mobility in gel electrophoresis, indicating that the protein is modified after exocytosis from the parasite. By flow cytometric analysis, GRA7 was detected on the surface of intact host cells. An intracellular origin of surface-associated GRA7 seems likely since GRA7 released from extracellular parasites failed to label the host cell surface. Consistent with a role at a parasite-host interface, GRA7 proved to be a target antigen of the intracerebral immune response as evidenced by the presence of GRA7-specific antibodies in mouse cerebrospinal fluid during chronic infection.  相似文献   

7.
8.
9.
Determinants of Toxoplasma gondii virulence are still unknown, although genetic markers associated with T. gondii pathogenicity or host susceptibility to infection have been identified. To define indicator proteins of mouse virulence, type I strain parasites were attenuated by continuous passage in fibroblast culture and compared with the parental strain passaged in mice. The loss of acute virulence, evident by a 1000-fold higher pathogen dose causing 100% lethality in mice correlated with a less efficient infection of inflammatory cells at the site of inoculation, while parasite proliferation and invasiveness in vitro proved unimpaired. Infection with the attenuated parasites elicited earlier local interleukin-12 and strong interferon-gamma responses in vivo, although the activity that triggers interleukin-12 secretion in macrophages is reduced in the attenuated compared to the virulent strain variant. The interleukin-12-inducing T. gondii stimulus was identified as a protein(s) present in tachyzoite excretory products. Comparative proteome analysis combined with immunodetection and quantitation of a variety of T. gondii antigens indicated that the steady-state levels of actin, catalase, microneme protein 5, as well as dense granule proteins 1, 2, 3, 4, 5, 7, 8 and nucleoside triphosphate hydrolase 1 are decreased in the attenuated phenotype, whereas the surface antigen 1 and rhoptry protein 1 are produced at a similar level by virulent and attenuated parasites. In conclusion, these findings reveal a correlation between the efficient establishment of T. gondii infection in vivo and parasite synthesis of actin, catalase and several excretory proteins, and thus postulate a role for these molecules in acute virulence.  相似文献   

10.
11.
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.  相似文献   

12.
Toxoplasma gondii penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with T. gondii through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of T. gondii-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with T. gondii disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that T. gondii induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.  相似文献   

13.
Toxoplasma gondii: the model apicomplexan   总被引:6,自引:0,他引:6  
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.  相似文献   

14.
15.
We previously reported that phospholipase increases host cell penetration by Toxoplasma gondii. Here we show that calcium-dependent phospholipase A (PLA) activity is found in the supernatant of sonically disrupted T. gondii. When fractions of disrupted T. gondii were incubated with host cells, the release of fatty acids and lysolipids was detected. Fractions of sonically disrupted T. gondii with PLA activity increased T. gondii host cell penetration in a bioassay. In addition, a protein of approximately 20 kDa was detected by immunoblot of T. gondii antigens with horse antiserum to snake venom, the major antibody of which recognizes PLA2. Incubation of T. gondii with exogenous PLA2 resulted in increased solubility of a rhoptry protein. This protein, which we previously characterized as involved with enhanced parasite invasion of host cells and which is recognized by monoclonal antibody Tg49, was detected in increased amounts in supernatant fractions of extracellular parasites treated with PLA2. Whereas without PLA2 treatment, it is only slightly soluble under physiological conditions. This raises the possibility that PLA may be implicated in the release of rhoptry proteins.  相似文献   

16.
Toxoplasma gondii-associated meningoencephalitis is a significant disease of California sea otters (Enhydra lutris nereis), responsible for 16% of total mortality in fresh, beachcast carcasses. Toxoplasma gondii isolates were obtained from 35 California otters necropsied between 1998 and 2002. Based on multi-locus PCR-restriction fragment length polymorphism and DNA sequencing at conserved genes (18S rDNA, ITS-1) and polymorphic genes (B1, SAG1, SAG3 and GRA6), two distinct genotypes were identified: type II and a novel genotype, here called type x, that possessed distinct alleles at three of the four polymorphic loci sequenced. The majority (60%) of sea otter T. gondii infections were of genotype x, with the remaining 40% being of genotype II. No type I or III genotypes were identified. Epidemiological methods were used to examine the relationship between isolated T. gondii genotype(s) and spatial and demographic risk factors, such as otter stranding location and sex, as well as specific outcomes related to pathogenicity, such as severity of brain inflammation on histopathology and T. gondii-associated mortality. Differences were identified with respect to T. gondii genotype and sea otter sex and stranding location along the California coast. Localised spatial clustering was detected for both type II (centred within Monterey Bay) and x (centred near Morro Bay)-infected otters. The Morro Bay cluster of type x-infected otters overlaps previously reported high-risk areas for sea otter infection and mortality due to T. gondii. Nine of the 12 otters that had T. gondii-associated meningoencephalitis as a primary cause of death were infected with type x parasites.  相似文献   

17.
DNA was extracted from 71 meat samples obtained from UK retail outlets. All of these DNA preparations gave the expected polymerase chain reaction products when amplified with primers specific for the species from which the meat originated. A second polymerase chain reaction analysis, using primers specific for the Toxoplasma gondii SAG2 locus, revealed the presence of this parasite in 27 of the meat samples. Restriction analysis and DNA sequencing showed that 21 of the contaminated meats contained parasites genotyped as type I at the SAG2 locus, whilst six of the samples contained parasites of both types I and II. Toxoplasma- positive samples were subjected to further polymerase chain reaction analysis to determine whether any carried an allele of the dihydropteroate synthase gene that has recently been shown to be causally associated with sulfonamide resistance in T. gondii. In all cases, this analysis confirmed that parasites were present in the samples and, additionally, revealed that none of them carried the drug-resistant form of dihydropteroate synthase. These results suggest that a significant proportion of meats commercially available in the UK are contaminated with T. gondii. Although none of the parasites detected in this study carried the sulfonamide-resistance mutation, a simplified procedure for monitoring this situation merits development.  相似文献   

18.
19.
We previously reported that phospholipase increases host cell penetration by Toxoplasma gondii . Here we show that calcium-dependent phospholipase A (PLA) activity is found in the supernatant of sonically disrupted T. gondii . When fractions of disrupted T. gondii were incubated with host cells, the release of fatty acids and lysolipids was detected. Fractions of sonically disrupted T. gondii with PLA activity increased T. gondii host cell penetration in a bioassay. In addition, a protein of approximately 20 kDa was detected by immunoblot of T. gondii antigens with horse antiserum to snake venom, the major antibody of which recognizes PLA2. Incubation of T. gondii with exogenous PLA2 resulted in increased solubility of a rhoptry protein. This protein, which we previously characterized as involved with enhanced parasite invasion of host cells and which is recognized by monoclonal antibody Tg49, was detected in increased amounts in supernatant fractions of extracellular parasites treated with PLA2. Whereas without PLA2 treatment, it is only slightly soluble under physiological conditions. This raises the possibility that PLA may be implicated in the release of rhoptry proteins.  相似文献   

20.
The shikimate pathway is essential for survival of the apicomplexan parasites Plasmodium falciparum, Toxoplasma gondii and Cryptosporidium parvum. As it is absent in mammals it is a promising therapeutic target. Herein, we describe the genes encoding the shikimate pathway enzymes in T. gondii. The molecular arrangement and phylogeny of the proteins suggests homology with the eukaryotic fungal enzymes, including a pentafunctional AROM. Current rooting of the eukaryotic evolutionary tree infers that the fungi and apicomplexan lineages diverged deeply, suggesting that the arom is an ancient supergene present in early eukaryotes and subsequently lost or replaced in a number of lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号