首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oncogene mdm2 has been found to be amplified in human sarcomas, and the gene product binds to the tumor suppressor p53. In this report, we describe the dissection of the MDM2-binding domain on p53 as well as the p53-binding domain on MDM2. We also demonstrate that the oncoprotein simian virus 40 T antigen binds to the product of cellular oncogene mdm2. We have constructed several N- and C-terminal deletion mutants of p53 and MDM2, expressed them in vitro, and assayed their in vitro association capability. The N-terminal boundary of the p53-binding domain on MDM2 is between amino acids 1 and 58, while the C-terminal boundary is between amino acids 221 and 155. T antigen binds to an overlapping domain on the MDM2 protein. On the other hand, the MDM2-binding domain of p53 is defined by amino acids 1 and 159 at the N terminus. At the C terminus, binding is progressively reduced as amino acids 327 to 145 are deleted. We determined the effect of human MDM2 on the transactivation ability of wild-type human p53 in the Saos-2 osteosarcoma cell line, which does not have any endogenous p53. Human MDM2 inhibited the ability of human p53 to transactivate the promoter with p53-binding sites. Thus, human MDM2 protein, like the murine protein, can inactivate the transactivation ability of human p53. Interestingly, both the transactivation domain and the MDM2-binding domain of p53 are situated near the N terminus. We further show that deletion of the N-terminal 58 amino acids of MDM2, which eliminates p53 binding, also abolishes the capability of inactivating p53-mediated transactivation. This finding suggests a correlation of in vitro p53-MDM2 binding with MDM2's ability in vivo to interfere with p53-mediated transactivation.  相似文献   

2.
E6-AP is a 100-kDa cellular protein that mediates the interaction of the human papillomavirus type 16 and 18 E6 proteins with p53. The association of p53 with E6 and E6-AP promotes the specific ubiquitination and subsequent proteolytic degradation of p53 in vitro. We recently isolated a cDNA encoding E6-AP and have now mapped functional domains of E6-AP involved in binding E6, association with p53, and ubiquitination of p53. The E6 binding domain consists of an 18-amino-acid region within the central portion of the molecule. Deletion of these 18 amino acids from E6-AP results in loss of both E6 and p53 binding activities. The region that directs p53 binding spans the E6 binding domain and consists of approximately 500 amino acids. E6-AP sequences in addition to those required for formation of a stable ternary complex with E6 and p53 are necessary to stimulate the ubiquitination of p53. These sequences lie within the C-terminal 84 amino acids of E6-AP. The entire region required for E6-dependent ubiquitination of p53 is also required for the ubiquitination of an artificial E6 fusion protein.  相似文献   

3.
Products of a number of mutant p53 genes bind with high affinity to members of the hsp70 family of chaperonin proteins, whereas wild type p53 lacks this type of association. Examination of the sequences of p53 genes from five different species enabled us to predict domains on p53 which may be involved in the association with hsp70 family members. A synthetic polypeptide (Pro-17-Gly) corresponding to the candidate hsp70 binding domain bound to in vitro translated hsp70 as determined by affinity chromatography and nondenaturing gel mobility shift assays. In addition, the Pro-17-Gly peptide competitively inhibited association between hsp70 and p53, an activity which was determined by immunoprecipitation with anti-p53 monoclonal antibody PAb240. The data indicate that p53 contains a hsp70 binding domain, which is located in a highly conserved region at the amino terminus of the protein, and may participate in the cellular function of wild-type p53 or in the transforming capacity of p53 mutants.  相似文献   

4.
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.  相似文献   

5.
6.
Turnip crinkle virus encodes two proteins, p8 and p9, that are both required for cell-to-cell movement. The p8 movement protein has been demonstrated to bind RNA in a cooperative manner, although, similar to many other plant virus movement proteins, it contains no canonical RNA binding domain(s). However, three positively charged regions of p8 may potentially form ionic interactions with the RNA backbone. To identify functional regions of p8, a series of alanine and deletion scanning mutations were produced. The effects of these mutations were analysed using both in vitro RNA binding assays and in vivo infections of susceptible (Di-3) and resistant (Di-17) Arabidopsis thaliana plants. Several mutants that have reduced RNA binding ability were also demonstrated to be movement deficient and replication competent. Based on these results, there appear to be two regions, located between amino acids 18 and 31, and 50 and 72, that are required for RNA binding. Furthermore, additional regions (amino acids 12–15, and 34–37) appear to play a role in vivo unrelated to in vitro RNA binding activity.  相似文献   

7.
We cloned cDNA encoding the chicken p46 polypeptide, chp46, homologous to the p48 subunit of chicken chromatin assembly factor-1, chCAF-1p48. It comprises 424 amino acids including a putative initiation Met, is a member of the WD protein family, with seven WD repeat motifs, and exhibits 90.3% identity to chCAF-1p48 and 94.3% identity to the human and mouse p46 polypeptides (hup46 and mop46). The in vitro immunoprecipitation experiment established that chp46 interacts with histones H2B and H4 and chicken histone acetyltransferase-1, chHAT-1, whereas hup46 interacts with histones H2A and H4 and chHAT-1 and chCAF-1p48 with histone H4 and chHAT-1. The in vitro immunoprecipitation experiment, involving truncated mutants of chp46, revealed not only that two regions comprising amino acids 33-179 and 375-404 are necessary for its binding to H2B, but also that two regions comprising amino acids 1-32 and 405-424 are necessary for its binding to H4. Furthermore, the GST pulldown affinity assay, involving truncated mutants of chp46, revealed that a region comprising amino acids 359-404 (in fact, 375-404) binds to chHAT-1 in vitro. Taken together, these results indicate not only that chp46 should participate differentially in a number of DNA-utilizing processes through interactions of its distinct regions with chHAT-1 and histones H2B and H4, but also that the proper propeller structure of chp46 is not necessary for its interaction with chHAT-1.  相似文献   

8.
9.
Discrimination of DNA binding sites by mutant p53 proteins.   总被引:3,自引:1,他引:2       下载免费PDF全文
Critical determinants of DNA recognition by p53 have been identified by a molecular genetic approach. The wild-type human p53 fragment containing amino acids 71 to 330 (p53(71-330)) was used for in vitro DNA binding assays, and full-length human p53 was used for transactivation assays with Saccharomyces cerevisiae. First, we defined the DNA binding specificity of the wild-type p53 fragment by using systematically altered forms of a known consensus DNA site. This refinement indicates that p53 binds with high affinity to two repeats of PuGPuCA.TGPyCPy, a further refinement of an earlier defined consensus half site PuPuPuC(A/T).(T/A) GPyPyPy. These results were further confirmed by transactivation assays of yeast by using full-length human p53 and systematically altered DNA sites. Dimers of the pentamer AGGCA oriented either head-to-head or tail-to-tail bound efficiently, but transactivation was facilitated only through head-to-head dimers. To determine the origins of specificity in DNA binding by p53, we identified mutations that lead to altered specificities of DNA binding. Single-amino-acid substitutions were made at several positions within the DNA binding domain of p53, and this set of p53 point mutants were tested with DNA site variants for DNA binding. DNA binding analyses showed that the mutants Lys-120 to Asn, Cys-277 to Gln or Arg, and Arg-283 to Gln bind to sites with noncanonical base pair changes at positions 2, 3, and 1 in the pentamer (PuGPuCA), respectively. Thus, we implicate these residues in amino acid-base pair contacts. Interestingly, mutant Cys-277 to Gln bound a consensus site as two and four monomers, as opposed to the wild-type p53 fragment, which invariably binds this site as four monomers.  相似文献   

10.
11.
A collection of C-terminal deletion mutants of the influenza A virus NS1 gene has been used to define the regions of the NS1 protein involved in its functionality. Immunofluorescence analyses showed that the NS1 protein sequences downstream from position 81 are not required for nuclear transport. The capacity of these mutants to bind RNA was studied by in vitro binding tests using a model vRNA probe. These experiments showed that the N-terminal 81 amino acids of NS1 protein are sufficient for RNA binding activity. The collection of mutants also served to map the NS1 sequences required for nuclear retention of mRNA and for stimulation of viral mRNA translation, using the NP gene as reporter. The results obtained indicated that the N-terminal 113 amino acids of NS1 protein are sufficient for nuclear retention of mRNA and stimulation of viral mRNA translation. The possibility that this region of the protein may be sufficient for virus viability is discussed in relation to the sequences of NS1 genes of field isolates and to the phenotype of known viral mutants affected in the NS1 gene.  相似文献   

12.
The Mdm2 protein is the major regulator of the tumor suppressor protein p53. We show that the p53 protein associates both with the N-terminal and with the central domain of Mdm2. The central p53-binding site of Mdm2 encompasses amino acids 235-300. Binding of p53 to the central domain is significantly enhanced after phosphorylation of the central domain of Mdm2. The N-terminal and central domains of Mdm2 act synergistically in binding to p53. p53 mutants that have mutations in the tetramerization domain and that fail to oligomerize do not show such an enhancement of binding in the presence of the other binding site.  相似文献   

13.
To identify regions on the large T antigens of simian virus 40 (SV40) and polyomavirus which are involved in oncogenic transformation, we constructed plasmids encoding hybrid polyomavirus-SV40 large T antigens. The hybrid T antigens were expressed in G418 sulfate-resistant pools of rat F2408 cells, and extracts of such pools were immunoprecipitated with an antibody against p53. Two hybrid T antigens containing SV40 amino acids 337 to 708 bound to p53, whereas another hybrid T antigen containing SV40 amino acids 412 to 708 did not. This suggests that a binding domain on SV40 large T antigen for p53 is contained within amino acids 337 to 708, with amino acids 337 to 411 playing an important role. One of the two hybrids that bound to p53 was chosen for further study. This T antigen contained SV40 large T antigen amino acids 336 to 708 joined to polyomavirus large T antigen amino acids 1 to 521 (PyT1-521-SVT336-708). Immunoprecipitation with antibodies directed against the product of the retinoblastoma susceptibility gene, p105-RB, showed that this hybrid bound p105-RB as well as p53. Pools expressing the hybrid PyT1-521-SVT336-708 did not grow in soft agar, nor did they form foci on confluent monolayers of nontransformed F2408 cells. The hybrid T antigen was expressed at levels comparable to those seen in retrovirus-infected F2408 cells expressing only SV40 large T antigen, which do show a transformed phenotype. Thus, this level of expression was sufficient for transformation by SV40 large T antigen but not for the hybrid large T antigen. These data, combined with genetic studies from other laboratories, suggest that complex formation with p53 and p105-RB is necessary but not sufficient for the oncogenic potential of papovavirus large T antigens.  相似文献   

14.
15.
We have mutated amino acids within the receptor-binding domain of Moloney murine leukemia virus envelope in order to identify residues involved in receptor binding. Analysis of mutations in the region of amino acids 81 to 88 indicates that this region is important for specific envelope-receptor interactions. None of the aspartate 84 (D-84) mutants studied bind measurably, although they are efficiently incorporated into particles. D-84 mutants have titers that correspond to the severity of the substitution. This observation suggests that D-84 may provide a direct receptor contact. Mutations in the other charged amino acids in this domain (R-83, E-86, and E-87) yield titers similar to those of wild-type envelope, but the affinity of the mutant envelope in the binding assay is decreased by nonconservative substitutions in parallel to the severity of the change. These other amino acids may either provide secondary receptor contacts or assist in maintaining a structure in the domain that favors efficient binding. We also studied other regions of high hydrophilicity. Our initial characterization indicates that amino acids 106 to 111 and 170 to 188 do not play a major role in receptor binding. Measurements of relative binding affinity and titer indicate that most mutations in the region of amino acids 120 to 131 did not significantly affect receptor binding. However, SU encoded by mutants H123V, R124L, and C131A as well as C81A could not be detected in particles and therefore did not bind measurably. Therefore, the region encompassed by amino acids 81 to 88 appears to be directly involved in receptor binding.  相似文献   

16.
Hantavirus nucleocapsid (N) protein has been suggested to form homodimers and homotrimers that are further integrated into the nucleocapsid filaments around the viral RNA. Here we report detailed mapping of the regions involved in the homotypic N protein interactions in Tula hantavirus (TULV). Peptide scan screening was used to define the interaction regions, and the mammalian two-hybrid assay was used for the functional analysis of N protein mutants. To study linear regions responsible for N protein interaction(s), we used peptide scanning in which N peptides synthesized on membranes recognize recombinant TULV N protein. The data showed that the N protein bound to membrane-bound peptides comprising amino acids 13 to 30 and 41 to 57 in the N-terminal part and 340 to 379, 391 to 407, and 410 to 419 in the C-terminal part of the molecule. Further mapping of the interaction regions by alanine scanning indicated the importance of basic amino acids along the N protein and especially asparagine-394, histidine-395, and phenyalanine-396 in forming the binding interface. Analysis of truncated mutants in the mammalian two-hybrid assay showed that N-terminal amino acids 1 to 43 are involved in and C-terminal amino acids 393 to 398 (VNHFHL) are absolutely crucial for the homotypic interactions. Furthermore, our data suggested a tail-to-tail and head-to-head binding scheme for the N proteins.  相似文献   

17.
18.
19.
The E6 oncoproteins encoded by the cancer-associated human papillomaviruses (HPVs) can associate with and promote the degradation of wild-type p53 in vitro. To gain further insight into this process, the ability of HPV-16 E6 to complex with and promote the degradation of mutant forms of p53 was studied. A correlation between binding and the targeted degradation of p53 was established. Mutant p53 proteins that bound HPV-16 E6 were targeted for degradation, whereas those that did not complex HPV-16 E6 were not degraded. Since the HPV-16 E6-promoted degradation involves the ubiquitin-dependent proteolysis pathway, specific mutations were made in the amino terminus of p53 to examine whether the E6 targeted degradation involved the N-end rule pathway. No requirement for destabilizing amino acids at the N terminus of p53 was found, nor was evidence found that HPV-16 E6 could provide this determinant in trans, indicating that the N-terminal rule pathway is not involved in the E6-promoted degradation of p53.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号