首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure.  相似文献   

2.
Stomatal responses to humidity in air and helox   总被引:11,自引:5,他引:6  
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed 'helox'. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water-vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces ( ci ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci , suggesting heterogeneous (patchy) stomatal closure.  相似文献   

3.
Water Vapour and Heat Transfer in Leaves   总被引:2,自引:0,他引:2  
SHERIFF  D. W. 《Annals of botany》1979,43(2):157-171
Factors connected with the formation of water droplets in leavesby distillation from the mesophyll to the epidermis were investigatedin a number of species. It was concluded that in illuminatedleaves water droplets form principally on the inner walls ofguard and subsidiary cells, and sometimes below the anticlinalwalls of epidermal cells, because these sites are cooler thanthe rest of the leaf. Under more isothermal conditions any waterdroplets that had formed disappeared. With increasing waterstress water droplets did not form so readily, though distillationwas occurring. Few water droplets were observed in leaves outof doors that had open stomata. Significant temperature gradientswere measured across leaves with thermocouples, but these werelarger than were gradients calculated from measured thermalconductivities of leaves. The evaporation resistances of theinner walls of the epidermis and of the mesophyll were foundto be similar. This led to the conclusion that the hydrophobicityof the surfaces of these tissues is similar. Water transferin leaves in the vapour phase was found to be more responsiveto temperature than to water stress gradients. leaf, evaporation, distillation, heat loss, transpiration  相似文献   

4.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

5.
Transpiration rates of single leaves of Pelargonium and wheatwere measured under constant conditions of light, temperature,and air flow. Concurrently, stomatal movement was followed withthe resistance porometer during cycles of changing water contentof the leaf and changes induced by light and darkness. Stomatalmovement was found to exert a large controlling influence onthe transpiration rate, whereas water content had an extremelysmall or negligible effect. An approximately inverse linearrelation between transpiration rate and logarithm of resistanceto viscous flow through the leaf is believed to be the resultantof an inverse curvilinear relationship between the diffusiveconductance of the stomata and log. leaf resistance and thedecreasing difference of vapour pressure arising from the highertranspiration rates with increasing stomatal conductances. Nevertheless,the relation demonstrates that the transpiration rate is influencedby the degree of stomatal opening throughout its entire range. There was some evidence of lower transpiration rates duringand after recovery from wilting than before wilting. This isattributed to a decrease in a cell-wall conductance, the evaporatingsurface being located within the cell wall. During wilting partiallyirreversible contraction of the cell wall occurs. There wasalso evidence of slow changes in cell volume at full turgidityattributable to plastic flow. These occurred when the leaf wastransferred from environments of a high to low potential forevaporation. Extensive movement of the stomata followed changes in leaf water,passive opening resulting from decrease and closure from increaseof leaf water. It is suggested that the direction and extentof stomatal changes induced by water deficits is a consequenceof the rate of change of leaf water content and not of the absolutevalues. The stomata also showed an enhanced tendency to closein dry moving air following a period of wilting even after theleaf had regained turgidity.  相似文献   

6.
The increase in the measured transpiration rate in tobacco leaves due to the experimentally decreased humidity of the bulk air was found to be significantly lower than the theoretical value calculated from the change of water vapour concentration gradients. Boundary layer and stomatal diffusive resistances remained unchanged under experimental conditions with no change of net photosynthetic CO2 uptake. This suggests an increase in intercellular diffusive resistance with an increase in water vapour concentration gradient which is the driving force of water vapour diffusive part of transpiration flux. The increase can be ascribed to the lengthening of intercellular diffusive pathway as steeper water vapour concentration gradient in intercellular spaces results in an increased evaporating surface of intercellular cells thus moving the effective plane of vaporization in leaf mesophyll further inwards. Due to different and independent changes of concentration gradients for water vapour and CO2, different length of intercellular diffusive pathways for CO2 and water vapour may be expected.  相似文献   

7.
Water in the transpiration stream is distributed throughoutthe leaves in the vascular bundles. In wheat, water appearsto be confined to the main veins by the mestome sheath and toenter the mesophyll through the walls of the smaller veins.Within the mesophyll the water in the transpiration stream movesin the free space of the cell walls to the evaporating surfacesof the leaf. The lead chelate, which is used to trace the transpirationstream, accumulates at the final points of evaporation at themargin of the leaf. Lead chelate accumulates beneath and onthe surface of the cuticle, being partly associated with theanticlinal walls of the epidermal cells, the walls of the stomatalguard cells and specialized epidermal cells. Chelate does notaccumulate at the base of substomatal cavities, indicating thatthe cuticle of the epidermis is the main evaporating surfaceof the leaf. The behaviour in broad bean, laurel, and plantainis essentially the same. The rate of peristomatal and cuticulartranspiration is closely related to the size of the stomatalaperture. Conditions which control stomatal aperture also causechanges in the dimensions of the epidermal cells.  相似文献   

8.
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available.  相似文献   

9.
Abstract. Cuticular resistance to water vapour diffusion is an important aspect of thermocouple psychrometry and may introduce significant error in the measurement of leaf water potential (Ψ). The effect of the citrus (Citrus mitis Blanco) leaf cuticle on water vapour movement was studied using the times required for vapour pressure equilibration during thermocouple psychrometric measurement of Ψ. Cuticular abrasion with various carborundum powders was used to reduce the diffusive resistance of both the adaxial and abaxial leaf surfaces, and the extent of the disruption to the leaf was investigated with light and electron microscopy. Cuticular abrasion resulted in reduced equilibration times due to decreased cuticular resistance and greater water vapour movement between the leaf and the psychrometer chamber. Equilibration times were reduced from over 5 h in the unabraded control leaves to 1 h with cuticle abrasion. This was associated with the decrease in diffusive resistance with cuticular abrasion from over 55 s cm?1 to less than 8 s cm?1 for both the adaxial and abaxial leaf surfaces. Scanning electron micrographs of the abraded leaf tissue revealed considerable disruption of the stomatal ledge and of the guard cells, surface smoothing and displacement of waxes into the stomatal aperture, and damage to veins. Observations with the transmission electron microscope revealed frequent disruption of epidermal cell walls, and damage to both the cytoplasmic and vacuolar membranes.  相似文献   

10.
The CO2 and H2O vapour exchange of single attached orange, Citrus sinensis (L.), leaves was measured under laboratory conditions using infrared gas analysis. Gaseous diffusive resistances were derived from measurements at a saturating irradiance and at a leaf temperature optimum for photosynthesis. Variation in leaf resistance (within the range 1.6 to 60 s cm-1) induced by moisture status, or by cyclic oscillations in stomatal aperture, was associated with changes in both photosynthesis and transpiration. At low leaf resistance (ri less than 10 s cm-1) the ratio of transpiration to photosynthesis declined with reduced stomatal aperture, indicating a tighter stomatal control over H2O vapour loss than over CO2 assimilation. At higher leaf resistance (ri greater than 10 s cm-1) changes in transpiration and photosynthesis were linearly related, but leaf resistance and mesophyll resistance were also positively correlated, so that strictly stomatal control of photosynthesis became more apparent than real. This evidence, combined with direct measurements of CO2 diffusive resistances (in a -O2 gas stream) emphasised the presence of a significant mesophyll resistance; i.e., an additional and rate limiting resistance to CO2 assimilation over and above that encountered by H2O vapour escaping from the leaf.  相似文献   

11.
Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6–7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of −0.8 MPa, whereas mesophyll resistance started to increase at about −1.4 MPa. Decreasing xylem water potentials increased the CO2 compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.  相似文献   

12.
Trees planted in urban landscapes in southern California are often exposed to an unusual combination of high atmospheric evaporative demand and moist soil conditions caused by irrigation. The water relations of species transplanted into these conditions are uncertain. We investigated the water relations of coast redwood (Sequoia sempervirens) planted in the urbanized semi-arid Los Angeles Basin, where it often experiences leaf chlorosis and senescence. We measured the sap flux (J(O)) and hydraulic properties of irrigated trees at three sites in the Los Angeles region. We observed relatively strong stomatal regulation in response to atmospheric vapour pressure deficit (D; J(O) saturated at D < 1 kPa), and a linear response of J(O) to photosynthetically active radiation. Total tree water use by coast redwood was relatively low, with plot-level transpiration rates below 1 mm d(-1) . There was some evidence of xylem cavitation during the summer, which appeared to be reversed in fall and early winter. We conclude that water stress was not a direct factor in causing leaf chlorosis and senescence as has been proposed. Instead, the relatively strong stomatal control that is adaptive in the native habitat of coast redwood may lead to carbon limitation and other stresses in semi-arid, irrigated habitats.  相似文献   

13.
Water Supply, Evaporation, and Vapour Diffusion in Leaves   总被引:12,自引:1,他引:11  
On the basis of experimental results published during the last25 years, but more particularly during the last 5 years andincluding some results presented here, the hypothesis is proposedthat an important portion of the water supply from major veinsin leaves travels within the epidermal tissue to sites of evaporationclose to the stomatal pores. These evaporation sites are innerepidermal walls especially subsidiary and guard cell walls becausethese are closest to air spaces with the highest water vapourdeficits. Less water than is traditionally supposed evaporatesfrom mesophyll cell walls. Low osmotic potentials of guard cells(large negative) are not required in building up high turgorpressures. However, they are required in competing for wateragainst the process of evaporation which causes low matric potentialsto develop in subsidiary and guard cell walls so that guardcolls can maintain the comparatively low turgor pressures whichhave been shown to operate the stomatal apparatus. Traditionalviews about leaf water relations and methods of estimating mesophyllresistances for carbon dioxide diffusion into leaves must bemodified.  相似文献   

14.
Bunce JA 《Plant physiology》1977,59(3):348-350
Mesophyll resistance to CO2 uptake was calculated from gas exchange data on intact leaves of 12 species of woody plants. Plants studied were native to habitats ranging from streamsides to deserts. Gas exchange measurements were made at light saturation and constant temperature to eliminate possible effects of light and temperature on estimates of mesophyll resistance. Cuticular transpiration was measured and used in calculation of stomatal resistances from whole leaf transpiration rates. In all species examined, an increase in mesophyll resistance was observed as leaves dried. The increase in mesophyll resistance in all cases occurred at the same water potential as the initial decline in net photosynthesis, and was accompanied by an increase in stomatal resistance.  相似文献   

15.
1. Provenances of Castanea sativa from populations adapted to different climatic areas of Turkey were grown in a field trial in Italy. Carbon isotope discrimination (Δ) in leaf dry matter and in leaf soluble sugar, were measured, along with photosynthesis, stomatal conductance and mesophyll conductance, to study the variability of primary productivity and its ecological significance in European Chestnut.
2. Genetic variations were found in RuBP carboxylase, chlorophyll, leaf soluble protein and leaf thickness.
3. Carbon isotope discrimination (Δ) in leaf dry matter was greater in drought-adapted than in wet-adapted provenances. A similar variation of Δ was observed in leaf soluble carbohydrates either under watered or drought conditions. Possible environmental effects of variables such as vapour pressure difference, on the relationship between transpiration efficiency and carbon isotope discrimination are discussed, on the basis of short-term and long-term results.
4. Generally low values of Δ encountered among provenances were explained not only by low values of intercellular CO2 partial pressure but also by consistently low values of mesophyll conductance leading to reduced chloroplastic CO2 partial pressure. A decrease in mesophyll conductance was induced by water shortage. Co-ordination was found between stomatal and mesophyll conductance, with the drought-adapted provenances showing much higher mesophyll conductance than the wet-adapted provenances. Variations in mesophyll conductance were related to differences in leaf protein content.
5. Possible ecophysiological adaptive mechanisms are discussed taking into account stomatal sensitivity, modulation of photosynthetic capacity and water-use efficiency under drought conditions.  相似文献   

16.
Stomatal response to humidity: implications for transpiration   总被引:1,自引:1,他引:0  
Abstract. Transpiration rates from apple leaves are analysed in terms of the ratio of latent heat flux (λ E ) to leaf net radiation ( Q 1) and the climatological resistance ( ri ). Increases in stomatal resistance with increasing leaf to air vapour pressure gradient ( D ), described by an empirical model, are incorporated in the analysis. This humidity effect causes the proportion of energy dissipated as latent heat to fall as Q 1 increases, so that leaf transpiration rates in high energy environments are likely to be similar to those in lower energy environments. Boundary layer resistance ( r a) exerts an increasingly important effect on transpiration rates as Q 1 increases. At constant Q 1 stomatal closure in response to increasing D results in very small changes in leaf temperature ( T 1) across a wide range of ambient vapour pressure deficits (δ e ); r a is then the major factor determining T 1. The implications of these results are discussed.  相似文献   

17.
Photosynthetic Response to Water Stress in Phaseolus vulgaris   总被引:1,自引:0,他引:1  
Water stressed Phaseolus vulgaris L. plants were monitored to detect the relationships between net photosynthesis, transpiration, boundary layer plus stomatal resistance, mesophyll resistance, CO2 compensation point, ribulose, 1,5-diphosphate carboxylase activity and leaf water potential. At full expansion, the first trifoliate leaves of greenhouse grown bean plants were subjected to water stress by withholding irrigation. Gas exchange and enzyme activity of the central trifoliolate leaflets were monitored as leaf water potential decreased. Although increased stomatal resistance appeared to be the primary causal factor of reduced net photosynthesis, increased mesophyll resistance and decreased ribulose 1,5-diphosphate carboxylase activity further documented the role of non-stomatal factors.  相似文献   

18.
Co-ordination of vapour and liquid phase water transport properties in plants   总被引:26,自引:7,他引:19  
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.  相似文献   

19.
BACKGROUND AND AIMS: The influence of stomatal architecture on stomatal conductance and on the developing concentration gradient was explored quantitatively by comparing diffusion rates of water vapour and CO(2) occurring in a set of three-dimensional stoma models. The influence on diffusion of an internal cuticle, a sunken stoma, a partially closed stoma and of substomatal chambers of two different sizes was considered. METHODS: The study was performed by using a commercial computer program based on the Finite Element Method which allows for the simulation of diffusion in three dimensions. By using this method, diffusion was generated by prescribed gas concentrations at the boundaries of the substomatal chamber and outside of the leaf. The program calculates the distribution of gas concentrations over the entire model space. KEY RESULTS: Locating the stomatal pore at the bottom of a stomatal antechamber with a depth of 20 microm decreased the conductance significantly (at roughly about 30 %). The humidity directly above the stomatal pore is significantly higher with the stomatal antechamber present. Lining the walls of the substomatal chamber with an internal cuticle which suppresses evaporation had an even stronger effect by reducing the conductance to 60 % of the original value. The study corroborates therefore the results of former studies that water will evaporate preferentially at sites in the immediate vicinity to the stomatal pore if no internal cuticle is present. The conductance decrease affects only water vapour and not CO(2). Increasing the substomatal chamber increases CO(2) uptake, whereas transpiration increases if an internal cuticle is present. CONCLUSIONS: Variation of stomatal structure may, with unchanged pore size and depth, profoundly affect gas exchange and the pathways of liquid water inside the leaf. Equations for calculation of stomatal conductance which are solely based on stomatal density and pore depth and size can significantly overestimate stomatal conductance.  相似文献   

20.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号