首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endoglucanase Cel9A from Alicyclobacillus acidocaldarius (AaCel9A) has an Ig-like domain and the enzyme stability is dependent to calcium. In this study the effect of calcium on the structure and stability of the wild-type enzyme and the truncated form (the wild-type enzyme without Ig-like domain, AaCel9AΔN) was investigated. Fluorescence quenching results indicated that calcium increased and decreased the rigidity of the wild-type and truncated enzymes, respectively. RMSF results indicated that AaCel9A has two flexible regions (regions A and B) and deleting the Ig-like domain increased the truncated enzyme stability by decreasing the flexibility of region B probably through increasing the hydrogen bonds. Calcium contact map analysis showed that deleting the Ig-like domain decreased the calcium contacting residues and their calcium binding affinities, especially, in region B which has a role in calcium binding site in AaCel9A. Metal depletion and activity recovering as well as stability results showed that the structure and stability of the wild-type and truncated enzymes are completely dependent on and independent of calcium, respectively. Finally, one can conclude that the deletion of Ig-like domain makes AaCel9AΔN independent of calcium via decreasing the flexibility of region B through increasing the hydrogen bonds. This suggests a new role for the Ig-like domain which makes AaCel9A structure dependent on calcium.  相似文献   

2.
Structural calcium sites control protein thermostability and activity by stabilizing native folds and changing local conformations. Alicyclobacillus acidocaldarius survives in thermal-acidic conditions and produces an endoglucanase Cel9A (AaCel9A) which contains a calcium-binding site (Ser465 to Val470) near the catalytic cleft. By superimposing the Ca2+-free and Ca2+-bounded conformations of the calcium site, we found that Ca2+ induces hydrophobic interactions between the calcium site and its nearby region by driving a conformational change. The hydrophobic interactions at the high-B-factor region could be enhanced further by replacing the surrounding polar residues with hydrophobic residues to affect enzyme thermostability and activity. Therefore, the calcium-binding residue Asp468 (whose side chain directly ligates Ca2+), Asp469, and Asp471 of AaCel9A were separately replaced by alanine and valine. Mutants D468A and D468V showed increased activity compared with those of the wild type with 0 mM or 10 mM Ca2+ added, whereas the Asp469 or Asp471 substitution resulted in decreased activity. The D468A crystal structure revealed that mutation D468A triggered a conformational change similar to that induced by Ca2+ in the wild type and developed a hydrophobic interaction network between the calcium site and the neighboring hydrophobic region (Ala113 to Ala117). Mutations D468V and D468A increased 4.5°C and 5.9°C, respectively, in melting temperature, and enzyme half-life at 75°C increased approximately 13 times. Structural comparisons between AaCel9A and other endoglucanases of the GH9 family suggested that the stability of the regions corresponding to the AaCel9A calcium site plays an important role in GH9 endoglucanase catalysis at high temperature.  相似文献   

3.
The aim of this work was to investigate the behavior of thermophilic esterase EST2 from Alicyclobacillus acidocaldarius in milk and cheese models. The pure enzyme was used to compare the EST2 hydrolytic activity to the activity of endogenous esterase EstA from Lactococcus lactis. The results indicate that EST2 exhibits 30-fold-higher esterase activity than EstA. As EstA has thioesterase activity, EST2 was assayed for this activity under the optimal conditions determined for EstA (namely, 30°C and pH 7.5). Although it is a thermophilic enzyme, EST2 exhibited eightfold-higher thioesterase activity than EstA with S-methyl thiobutanoate. The abilities of EST2 and EstA to synthesize short-chain fatty acid esters were compared. Two methods were developed to do this. In the first method a spectrophotometric assay was used to monitor the synthesis of esters by the pure enzymes using p-nitrophenol as the alcohol substrate. The synthetic activities were also evaluated under conditions that mimicked those present in milk and/or cheese. The second method involved evaluation of the synthetic abilities of the enzymes when they were directly added to a model cheese matrix. Substantial ester synthesis by EST2 was observed under both conditions. Finally, esterase and thioesterase activities were evaluated in milk using the purified EST2 enzyme and in the model cheese matrix using a strain of L. lactis NZ9000 harboring the EST2 gene and thus overproducing EST2. Both the esterase and thioesterase activities measured in milk and in the cheese matrix were much greater than the activities of the controls.  相似文献   

4.
5.
Recent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three-dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group. The structural data in this case did not allowed us to rationalize the effect of the mutation, since this hydrogen bond was predicted to be unaltered in the mutant. Since the mutation could shed light on the role of the oxyanion loop in the HSL family, experiments to elucidate at the mechanistic level the reasons of the observed drop in k (cat) were devised. In this work, the kinetic and structural features of the G84S mutant were investigated in more detail. The optimal temperature and pH for the activity of the mutated enzyme were found significantly changed (T = 65 degrees C and pH = 5.75). The catalytic constants K (M) and V(max) were found considerably altered in the mutant, with ninefold increased K (M) and 14-fold decreased V(max), at pH 5.75. At pH 7.1, the decrease in k (cat) was much more dramatic. The measurement of kinetic constants for some steps of the reaction mechanism and the resolution of the mutant 3D structure provided evidences that the observed effects were partly due to the steric hindrance of the S84-OH group towards the ester substrate and partly to its interference with the nucleophilic attack of a water molecule on the second tetrahedral intermediate.  相似文献   

6.
Amino acid modifications of the Thermobifida fusca Cel9A-68 catalytic domain or carbohydrate binding module 3c (CBM3c) were combined to create enzymes with changed amino acids in both domains. Bacterial crystalline cellulose (BC) and swollen cellulose (SWC) assays of the expressed and purified enzymes showed that three combinations resulted in 150% and 200% increased activity, respectively, and also increased synergistic activity with other cellulases. Several other combinations resulted in drastically lowered activity, giving insight into the need for a balance between the binding in the catalytic cleft on either side of the cleavage site, as well as coordination between binding affinity for the catalytic domain and CBM3c. The same combinations of amino acid variants in the whole enzyme, Cel9A-90, did not increase BC or SWC activity but did have higher filter paper (FP) activity at 12% digestion.Cellulases catalyze the breakdown of cellulose into simple sugars that can be fermented to ethanol. The large amount of natural cellulose available is an exciting potential source of fuels and chemicals. However, the detailed molecular mechanisms of crystalline cellulose degradation by glycoside hydrolases are still not well understood and their low efficiency is a major barrier to cellulosic ethanol production.Thermobifida fusca is a filamentous soil bacterium that grows at 50°C in defined medium and can utilize cellulose as its sole carbon source. It is a major degrader of plant cell walls in heated organic materials such as compost piles and rotting hay and produces a set of enzymes that includes six different cellulases, three xylanases, a xyloglucanase, and two CBM33 binding proteins (12). Among them are three endocellulases, Cel9B, Cel6A, and Cel5A (7, 8), two exocellulases, Cel48A and Cel6B (6, 19), and a processive endocellulase, Cel9A (5, 7).T. fusca Cel9A-90 (Uniprot P26221 and YP_290232) is a multidomain enzyme consisting of a family 9 catalytic domain (CD) rigidly attached by a short linker to a family 3c cellulose binding module (CBM3c), followed by a fibronectin III-like domain and a family 2 CBM (CBM2). Cel9A-68 consists of the family 9 CD and CBM3c. The crystal structure of this species (Fig. (Fig.1)1) was determined by X-ray crystallography at 1.9 Å resolution (Protein Data Bank [PDB] code 4tf4) (15). Previous work has shown that E424 is the catalytic acid and D58 is the catalytic base (11, 20). H125 and Y206 were shown to play an important role in activity by forming a hydrogen bonding network with D58, an important supporting residue, D55, and Glc(−1)O1. Several enzymes with amino acid changes in subsites Glc(−1) to Glc(−4) had less than 20% activity on bacterial cellulose (BC) and markedly reduced processivity. It was proposed that these modifications disturb the coordination between product release and the subsequent binding of a cellulose chain into subsites Glc(−1) to Glc(−4) (11). Another variant enzyme with a deletion of a group of amino acids forming a block at the end of the catalytic cleft, Cel9A-68 Δ(T245-L251)R252K (DEL), showed slightly improved filter paper (FP) activity and binding to BC (20).Open in a separate windowFIG. 1.Crystal structure of Cel9A-68 (PDB code 4tf4) showing the locations of the variant residues, catalytic acid E424, catalytic base D58, hydrogen bonding network residues D55, H125, and Y206, and six glucose residues, Glc(−4) to Glc(+2). Part of the linker is visible in dark blue.The CBM3c domain is critical for hydrolysis and processivity. Cel9A-51, an enzyme with the family 9 CD and the linker but without CBM3c, had low activity on carboxymethyl cellulose (CMC), BC, and swollen cellulose (SWC) and showed no processivity (4). The role of CBM3c was investigated by mutagenesis, and one modified enzyme, R557A/E559A, had impaired activity on all of these substrates but normal binding and processivity (11). Variants with changes at five other CBM3c residues were found to slightly lower the activity of the modified enzymes, while Cel9A-68 enzymes containing either F476A, D513A, or I514H were found to have slightly increased binding and processivity (11) (see Table Table1).1). In the present work, CBM3c has been investigated more extensively to identify residues involved in substrate binding and processivity, understand the role of CBM3c more clearly, and study the coordination between the CD and CBM3c. An additional goal was to combine amino acid variants showing increased crystalline cellulose activity to see if this further increased activity. Finally, we have investigated whether the changes that improved the activity of Cel9A-68 also enhanced the activity of intact Cel9A-90.

TABLE 1.

Activities of Cel9A-68 CBM3c variant enzymes and CD variant enzymes used to create the double variants
EnzymeActivity (% of wild type) on:
% Processivity% BC bindingReference
CMCSWCBCFPa
Wild type10010010010010015This work
R378K9891103931392011
DELb981011011289620
F476A97105791001452111
D513A1001151211071192011
I514H104911121041102311
Y520A1087833a79871411
R557A1039860a9390This work
E559A869030a7094This work
R557A+E559A907515a751061511
Q561A1035651a7874This work
R563A977052a931292011
Open in a separate windowaThe target percent digestion could not be reached; activity was calculated using 1.5 μM enzyme.bDEL refers to deletion of T245 to L251 and R252K.  相似文献   

7.
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 degrees C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 micromol Pi/min/mg and a Km of 330 microM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.  相似文献   

8.
The modular structure of the T. reesei endoglucanase IV (EGIV) was reconstructed by fusing EGIV with an additional catalytic module (EGIV-CM). The genes eg4 and eg4-cm were obtained through RT-PCR and gene fusion, and were respectively expressed in recombinant Pichia strains (P. pastoris EGIV1 and P. pastoris EGIV-CM1). The CMC activities of cultivation supernatant of P. pastoris EGIV1 and P. pastoris EGIV-CM1 were 2.4 U/ml and 4.3 U/ml, respectively. Modification of the EGIV structure with an additional catalytic module improved the specific activity about 4-fold.  相似文献   

9.
The moderate thermophilic eubacterium Alicyclobacillus (formerly Bacillus) acidocaldarius expresses a thermostable carboxylesterase (esterase 2) belonging to the hormone-sensitive lipase (HSL)-like group of the esterase/lipase family. Based on secondary structures predictions and a secondary structure-driven multiple sequence alignment with remote homologous protein of known three-dimensional (3D) structure, we previously hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and esterases and identified Ser155, Asp252, and His282 as the putative members of the catalytic triad. In this paper we report the construction of a 3D model for this enzyme based on the structure of mouse acetylcholinesterase complexed with fasciculin. The model reveals the topological organization of the fold corroborating our predictions. As regarding the active-site residues, Ser155, Asp252, and His282 are located close to each other at hydrogen bond distances. Their catalytic role was here probed by biochemical and mutagenic studies. Moreover, on the basis of the secondary structure-driven multiple sequence alignment and the 3D structural model, a residue supposed important for catalysis, Gly84, was mutated to Ser. The activity of the mutated enzyme was drastically reduced. We propose that Gly84 is part of a putative "oxyanion hole" involved in the stabilization of the transition state similar to the C group of the esterase/lipase family.  相似文献   

10.
Synergism between cellulases facilitates efficient hydrolysis of microcrystalline cellulose. We hypothesize that the effects of synergism, observed as enhanced extents of hydrolysis, are related to cellulase binding to the substrate in mixtures. In this study, direct measurements of bound concentrations of fluorescence-labeled T. fusca Cel5A, Cel6B, and Cel9A on bacterial microcrystalline cellulose were used to study binding behaviors of cellulases in binary component reactions. The accuracy of the determination of fluorescence-labeled cellulase concentrations in binary component mixtures was in the range of 7-9%. Data at 5 degrees C show that binding levels of cellulases in mixture reactions are only 22-70% of the binding levels in single component reactions. At 50 degrees C, however, most of the cellulase components in the same mixtures bound to extents of 40-126% higher than in the corresponding single component reactions. The degrees of synergistic effect (DSE) observed for the reactions at 50 degrees C were greater than 1, indicating that the components in the mixture acted synergistically, whereas DSE < 1 was generally observed for the reactions at 5 degrees C indicating anti-synergistic behavior. Degrees of synergistic binding (DSB) were also calculated, where anti-synergistic mixtures had DSB < 1 and synergistic mixtures had DSB>1. We conclude that the lower extents of binding at 5 degrees C are due to competition for binding sites by the cellulase components in the mixtures and the enhanced binding extents at 50 degrees C are due to increased availability of binding sites on the substrates brought about by the higher extents of hydrolysis.  相似文献   

11.
A novel Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) was cloned and expressed in Escherichia coli, and its enzymatic properties were characterized. The cel5A gene consists of a 3,444-bp open reading frame and encodes a 1,148-amino-acid protein with a molecular mass of 127,047 Da. Cel5A is a modular enzyme consisting of an N-terminal signal peptide, two glycosyl hydrolase family 5 catalytic modules, two novel carbohydrate-binding modules (CBMs), two linker sequences, and a C-terminal sequence with an unknown function. The amino acid sequences of the two catalytic modules and the two CBMs are 94% and 73% identical to each other, respectively. Two regions that consisted of one CBM and one catalytic module were tandemly connected via a linker sequence. The CBMs did not exhibit significant sequence similarity with any other CBMs. Analyses of the hydrolytic activity of the recombinant Cel5A (rCel5A) comprising the CBMs and the catalytic modules showed that the enzyme is an endoglucanase with activities with carboxymethyl cellulose, lichenan, acid-swollen cellulose, and oat spelt xylan. To investigate the functions of the CBMs and the catalytic modules, truncated derivatives of rCel5A were constructed and characterized. There were no differences in the hydrolytic activities with various polysaccharides or in the hydrolytic products obtained from cellooligosaccharides between the two catalytic modules. Both CBMs had the same substrate affinity with intact rCel5A. Removal of the CBMs from rCel5A reduced the catalytic activities with various polysaccharides remarkably. These observations show that CBMs play an important role in the catalytic function of the enzyme.  相似文献   

12.
The araA gene encoding L-arabinose isomerase (AI) from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius was cloned, sequenced, and expressed in Escherichia coli. Analysis of the sequence revealed that the open reading frame of the araA gene consists of 1,491 bp that encodes a protein of 497 amino acid residues with a calculated molecular mass of 56,043 Da. Comparison of the deduced amino acid sequence of A. acidocaldarius AI (AAAI) with other AIs demonstrated that AAAI has 97% and 66% identities (99% and 83% similarities) to Geobacillus stearothermophilus AI (GSAI) and Bacillus halodurans AI (BHAI), respectively. The recombinant AAAI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The purified enzyme showed maximal activity at pH 6.0 to 6.5 and 65 degrees C under the assay conditions used, and it required divalent cations such as Mn2+, Co2+, and Mg2+ for its activity. The isoelectric point (pI) of the enzyme was about 5.0 (calculated pI of 5.5). The apparent Km values of the recombinant AAAI for L-arabinose and D-galactose were 48.0 mM (Vmax, 35.5 U/mg) and 129 mM (Vmax, 7.5 U/mg), respectively, at pH 6 and 65 degrees C. Interestingly, although the biochemical properties of AAAI are quite similar to those of GSAI and BHAI, the three AIs from A. acidocaldarius (pH 6), G. stearothermophilus (pH 7), and B. halodurans (pH 8) exhibited different pH activity profiles. Based on alignment of the amino acid sequences of these homologous AIs, we propose that the Lys-269 residue of AAAI may be responsible for the ability of the enzyme to act at low pH. To verify the role of Lys-269, we prepared the mutants AAAI-K269E and BHAI-E268K by site-directed mutagenesis and compared their kinetic parameters with those of wild-type AIs at various pHs. The pH optima of both AAAI-K269E and BHAI-E268K were rendered by 1.0 units (pH 6 to 7 and 8 to 7, respectively) compared to the wild-type enzymes. In addition, the catalytic efficiency (kcat/Km) of each mutant at different pHs was significantly affected by an increase or decrease in Vmax. From these results, we propose that the position corresponding to the Lys-269 residue of AAAI could play an important role in the determination of the pH optima of homologous AIs.  相似文献   

13.
We report a crystallographic and computational analysis of two mutant forms of the Alicyclobacillus acidocaldarius thioredoxin (BacTrx) done in order to evaluate the contribution of two specific amino acids to the thermostability of BacTrx. Our results suggest that the thermostability of BacTrx may be modulated by mutations affecting the overall electrostatic energy of the protein.  相似文献   

14.
Alicyclobacillus acidocaldarius endoglucanase Cel9A (AaCel9A) is an inverting glycoside hydrolase with β-1,4-glucanase activity on soluble polymeric substrates. Here, we report three X-ray structures of AaCel9A: a ligand-free structure at 1.8 Å resolution and two complexes at 2.66 and 2.1 Å resolution, respectively, with cellobiose obtained by co-crystallization and with cellotetraose obtained by the soaking method. AaCel9A forms an (α/α)6-barrel like other glycoside hydrolase family 9 enzymes. When cellobiose is used as a ligand, three glucosyl binding subsites are occupied, including two on the glycone side, while with cellotetraose as a ligand, five subsites, including four on the glycone side, are occupied. A structural comparison showed no conformational rearrangement of AaCel9A upon ligand binding. The structural analysis demonstrates that of the four minus subsites identified, subsites − 1 and − 2 show the strongest interaction with bound glucose. In conjunction with the open active-site cleft of AaCel9A, this is able to reconcile the previously observed cleavage of short-chain oligosaccharides with cellobiose as main product with the endo mode of action on larger polysaccharides.  相似文献   

15.
A novel dual function (reporter and affinity) tag system has been developed. Expression vectors have been constructed to express polypeptides in Escherichia coli cells as C-terminal fusions with esterase 2, a 34-kDa protein from Alicyclobacillus acidocaldarius. Presence of esterase allows to monitor the expression of fusion proteins spectrophotometrically or by activity staining in the polyacrylamide gels. The fusion proteins can be purified from crude bacterial extracts under non-denaturing conditions by one step affinity chromatography on Sepharose CL-6B immobilized trifluoromethyl-alkyl-ketone. The esterase carrier can be cleaved from fusion proteins by digestion with amino acid sequence-specific proteases blood coagulation factor Xa. The system has been used successfully for the expression and purification of polypeptides from different prokaryotic and eukaryotic organisms.  相似文献   

16.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

17.
A gene encoding a beta-1,4-glucanase (CelA) belonging to subfamily E1 of family 9 of glycoside hydrolases was cloned and sequenced from the gram-positive thermoacidophile Alicyclobacillus acidocaldarius strain ATCC27009. The translated protein contains an immunoglobulin-like domain but lacks a cellulose-binding domain. The enzyme, when overproduced in Escherichia coli and purified, displayed a temperature optimum of 70 degrees C and a pH optimum of 5.5. CelA contained one zinc and two calcium atoms. Calcium and zinc are likely to be important for temperature stability. The enzyme was most active against substrates containing beta-1,4-linked glucans (lichenan and carboxy methyl cellulose), but also exhibited activity against oat spelt xylan. A striking pattern of hydrolysis on p-nitrophenyl-glycosides was observed, with highest activity on the cellobioside derivative, some on the cellotetraoside derivative, and none on the glucoside and cellotrioside derivatives. Unmodified cellooligosaccharides were also hydrolyzed by CelA. No signal peptide for transport across the cytoplasmic membrane was detected. This, together with the substrate specificity displayed, near neutral pH optimum and irreversible inactivation at low pH, suggests a role for CelA as a cytoplasmic enzyme for the degradation of imported oligosaccharides.  相似文献   

18.
The thermoacidophilic bacterium Alicyclobacillus acidocaldarius is a rich source of glycoside hydrolases enabling its growth on several di- and polysaccharides. We report here the purification and the characterization of a beta-galactosidase from this source, the cloning of its gene, and the expression and the characterization of the recombinant enzyme (Aabeta-gal).The enzyme was purified 46-fold from A. acidocaldarius extracts; the gene for Aabeta-gal encoded a new member of the glycoside hydrolase family 42 (GH42) and it is flanked by a putative AraC/XylS regulator, however, the two genes were transcribed independently. The recombinant Aabeta-gal was characterized in detail revealing that it is optimally active and stable at 65 degrees C. Aabeta-gal is very specific for glycosides with an axial C4-OH at their non-reducing end, with kcat/KM values of 484, 186, and 332 s(-1) mM(-1) for 2-nitrophenyl-beta-d-galactoside, -fucoside, and 4-nitrophenyl-alpha-l-arabinoside, respectively. Finally, the characterization of the site-directed mutants Glu157Gly and Glu313Gly confirmed the latter as the nucleophile of the reaction and gave experimental evidence, for the first time in GH42, of the role of Glu157 as the acid/base of the catalyzed reaction.  相似文献   

19.
Molecular docking and molecular dynamics (MD) simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain (CD) with a polysaccharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.  相似文献   

20.
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号