首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mohanan VV  Khan R  Paulose CS 《Life sciences》2006,78(14):1603-1609
5-HT receptors are predominantly located in the brain and are involved in pancreatic function and cell proliferation through sympathetic nervous system. The objective of this study was to investigate the role of hypothalamic 5-HT, 5-HT1A and 5-HT2C receptor binding and gene expression in rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content, 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content was quantified by HPLC. 5-HT1A receptor assay was done by using specific agonist [3H]8-OH DPAT. 5-HT2C receptor assay was done by using specific antagonist [3H]mesulergine. The expression of 5-HT1A and 5-HT2C receptor gene was analyzed by RT-PCR. 5-HT content was higher in the hypothalamus of 72 h pancreatectomised rats. 5-HT1A and 5-HT2C receptors were down-regulated in the hypothalamus. RT-PCR analysis revealed decreased 5-HT1A and 5-HT2C receptor mRNA expression. The 5-HT1A and 5-HT2C receptors gene expression in the 7 days pancreatectomised rats reversed to near sham level. This study is the first to identify 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus during pancreatic regeneration in rats. Our results suggest the hypothalamic serotonergic receptor functional regulation during pancreatic regeneration.  相似文献   

2.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

3.
5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.  相似文献   

4.
E W Taylor  S Nikam  B Weck  A Martin  D Nelson 《Life sciences》1987,41(16):1961-1969
In an attempt to define pharmacophoric differences between 5-HT1, 5-HT1A and 5-HT2 recognition sites, a number of rigid analogs were studied and compared to analogous free chain tryptamines. Racemic partial ergolines RU 27849 and RU 28306 showed reduced potency at all 5-HT1 sites, but were at least equipotent to analogous tryptamines at the 5-HT2 site. A nonergoline-like constrained analog of tryptamine was similar in potency to RU 27849 at all 5-HT1 sites, but showed a 4-fold enhancement in potency over RU 27849 and tryptamine at the 5-HT2 site. At all 3 sites, 3-(tetrahydropyridyl) indoles (unless substituted at the indole 2-position) were the most potent rigid analogs studied and represent the most promising class for the development of selective compounds.  相似文献   

5.
5-HT2A and 5-HT2C receptors and their atypical regulation properties   总被引:6,自引:0,他引:6  
The 5-HT(2A) and 5-HT(2C) receptors belong to the G-protein-coupled receptor (GPCR) superfamily. GPCRs transduce extracellular signals to the interior of cells through their interaction with G-proteins. The 5-HT(2A) and 5-HT(2C) receptors mediate effects of a large variety of compounds affecting depression, schizophrenia, anxiety, hallucinations, dysthymia, sleep patterns, feeding behaviour and neuro-endocrine functions. Binding of such compounds to either 5-HT(2) receptor subtype induces processes that regulate receptor sensitivity. In contrast to most other receptors, chronic blockade of 5-HT(2A) and 5-HT(2C) receptors leads not to an up- but to a (paradoxical) down-regulation. This review deals with published data involving such non-classical regulation of 5-HT(2A) and 5-HT(2C) receptors obtained from in vivo and in vitro studies. The underlying regulatory processes of the agonist-induced regulation of 5-HT(2A) and 5-HT(2C) receptors, commonly thought to be desensitisation and resensitisation, are discussed. The atypical down-regulation of both 5-HT(2) receptor subtypes by antidepressants, antipsychotics and 5-HT(2) antagonists is reviewed. The possible mechanisms of this paradoxical down-regulation are discussed, and a new hypothesis on possible heterologous regulation of 5-HT(2A) receptors is proposed.  相似文献   

6.
7.
Three-dimensional (3-D) models of the human serotonin 5-HT1A and 5-HT2A receptors were constructed, energy refined, and used to study the interactions with a series of buspirone analogues. For both receptors, the calculations showed that the main interactions of the ligand imide moieties were with amino acids in transmembrane helix (TMH) 2 and 7, while the main interactions of the ligand aromatic moieties were with amino acids in TMH5, 6 and 7. Differences in binding site architecture in the region of highly conserved serine and tyrosine residues in TMH7 gave slightly different binding modes of the buspirone analogues at the 5-HT1A and 5-HT2A receptors. Molecular dynamics simulations of receptor-ligand interactions indicated that the buspirone analogues did not alter the interhelical hydrogen bonding patterns upon binding to the 5-HT2A receptor, while interhelical hydrogen bonds were broken and others were formed upon ligand binding to the 5-HT1A receptor. The ligand-induced changes in interhelical hydrogen bonding patterns of the 5-HT1A receptor were followed by rigid body movements of TMH2, 4 and 6 relative to each other and to the other TMHs, which may reflect the structural conversion into an active receptor structure.  相似文献   

8.
The optimisation of affinity and selectivity in a novel series of dual 5-HT5A/5-HT7 receptor ligands is described. Brain penetrant 2-aminodihydroquinazolines with low nanomolar affinities were identified.  相似文献   

9.
The optimisation of molecular properties within a series of 2-amino dihydroquinazoline 5-HT5A/5-HT7 receptor ligands resulted in a significantly improved brain-to-plasma ratio, enhancing the pharmacological utility of these compounds. By modulating the lipophilicity and pKa, a 20-fold increase in brain-to-plasma ratio could be achieved, leading to micromolar brain concentrations after oral administration. The enantiomers of one representative of this series of improved compounds were separated, and the configuration of the eutomer was determined by X-ray crystallography.  相似文献   

10.
G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 μM, full block with 100 μM) and by SCH23390 (EC50 = 1.95 μM, full block with 30 μM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders.  相似文献   

11.
1.Rat hypothalamic 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) concentrations are transiently sexually differentiated in the second week postpartum (pp), with higher levels in the female. In this report we investigate the possibility that 5-HT receptors may also exhibit sexual dimorphism in the neonatal period.2.5-HT1A and 5-HT2A receptors were quantitated by radioligand binding of [3H]ketanserin and [3H]8-OH DPAT, respectively, in hypothalamus and amygdala from male and female rats at days 8–16 pp.3.There was no sexual dimorphism or change in the density of 5-HT2A binding in hypothalamus or amygdala over days 8–16 pp. There was also no sexual dimorphism of 5-HT1A receptors.4.There was an increase in 5-HT1A receptor density in both the hypothalamus and the amygdala. In the hypothalamus, but not the amygdala, this increase was interrupted on day 14 by a decrease in 5-HT1A receptors, which we suggest may be of physiological significance in modifying the eventual pattern of adult agonistic activity.5.The results suggest that the sexual dimorphism in 5-HT turnover is predominantly presynaptic, relating to altered synthesis and/or release, and is not of sufficient magnitude or duration to produce adaptive responses in postsynaptic 5-HT1A or 5-HT2A receptors.  相似文献   

12.
Screening of various agents resulted in the identification of 5-methyl-1,2,3,4-tetrahydro-gamma-carboline (1; K(i)=5,300 nM) as a compound with modest affinity for mouse 5-HT(5A) receptors. Structure-affinity studies were conducted resulting in 5-methyl-2-[3-(4-fluorophenoxy)propyl]-1,2,3,4-tetrahydro-gamma-carboline (17; K(i)=13 nM). Although 17 also binds at 5-HT(2) receptors, it serves as a novel lead for the further development of 5-HT(5A) ligands.  相似文献   

13.
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioral and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A/C receptor selective agonist (±) DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of both, the 5-HT1A receptor agonist (±)-8-OH-DPAT and the 5-HT2A/C receptor agonist (−)DOI, to stimulate [35S]GTPγS binding was detected in the hippocampal CA1 area and fronto-parietal cortex of CB1 receptor knockout mice, respectively. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A/C and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A and 5-HT2A receptors to G proteins might be involved in these effects.  相似文献   

14.
Brain serotonin (5-HT) system has been implicated in pathophysiology of anxiety, depression, drug addiction, and schizophrenia. 5-HT2A receptor is involved in the mechanisms of stress-induced psychopathology and impulsive behavior. Here, we investigated the role of 5-HT2A receptor in the autoregulation of the brain 5-HT system. The chronic treatment with agonist of 5-HT2A receptor DOI (1.0 mg/kg, i.p./14 days) produced considerable decrease of 5-HT2A receptor-mediated "head-twitches" in AKR/J mice indicating desensitization of 5-HT2A receptors. Chronic DOI treatment failed to alter 5-HT2A receptor gene expression in the midbrain, hippocampus and frontal cortex. At the same time, the increase in the expression of the gene encoding key enzyme of 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), the increase in TPH2 activity and 5-HT levels and decreased expression of serotonin transporter (5-HTT) gene was found in the midbrain of DOI-treated mice. The results provide new evidence of receptor-gene cross-talk in the brain 5-HT system and the implication of 5-HT2A receptor in the autoregulation of the brain 5-HT system.  相似文献   

15.
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.  相似文献   

16.
The mRNA expression of serotonin receptors 5-HT1A and 5-HT2A was investigated by the quantitative method RT-PCR in rats adapted to cold (5 weeks at +4 -(+6) degrees C) and in control (5 weeks at +20-22 degrees C). Four brain regions were examined: frontal cortex, hypothalamus, hippocampus, and midbrain. The influence of cold adaptation on the mRNA expression of 5-HT15 receptor was not found to be absent. The mRNA expression of 5-HT2A receptor changed under long-term cold exposure. These changes in different brain regions were various: in hypothalamus, there was an increase of the 5-HT2A receptor mRNA expression; in the cortex, a decrease; in the hippocampus and midbrain, significant changes of the mRNA expression were absent. The findings appear bo te adaptive and, according to their localization in the central nervous system, regulatory. They also suggest involvement of brain serotoninergic system in mechanism of adaptive reorganization of temperature regulation.  相似文献   

17.
《Life sciences》1995,56(7):PL163-PL168
The effects of two putative 5-HT1A antagonists, 4-(2′-methoxyphenyl)-1-[2′-[N-(2″-pyridinyl)-p-iodobenzamido]ethyl]piperazine (p-MPPI) and 4-(2′-methoxyphenyl)-1-[2′-[N-(2″-pyridinyl)-p-flourobenzamido]ethyl]piperazine (p-MPPF), were examined in vivo in two tests of postsynaptic 5-HT1A receptor activation, hypothermia and reciprocal forepaw treading, in the rat. Both p-MPPI (10 mg/Kg, I.p.) and p-MPPF (10 mg/Kg, I.p.) antagonized the hypothermia induced by the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.5 mg/Kg, S.c.). Neither p-MPPI nor p-MPPF administered alone at a dose of 10 mg/kg (i.p.) induced hypothermia. Similarly, both p-MPPI (10 mg/Kg, I.p.) and p-MPPF (2.5 mg/Kg, I.p.) completely antagonized 8-OH-DPAT (2 mg/Kg, S.c.)-induced forepaw treading in rats pretreated with reserpine (1 mg/Kg, S.c., 18–24 hours prior to the experiment). p-MPPI and p-MPPF, at doses of 10 mg/kg (i.p.) did not induce forepaw treading in reserpine pretreated animals. The results of the present study demonstrate that p-MPPI and p-MPPF act as 5-HT1A receptor antagonists in these measures of postsynaptic 5-HT1A a receptor activation.  相似文献   

18.
A new group of serotoninergic 5-HT1A or 5-HT7 receptor ligands was identified. These compounds were designed and synthesized on a benzimidazolone scaffold and they enrich the well-known arylpiperazine class of 5-HT ligands. Diverse pharmacomodulations induced a shift in the affinity and selectivity profile with final identification of new potent hits.  相似文献   

19.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

20.
The ability of the selective 5-HT1A receptor agonist R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) to bind with 5-HT receptor(s) on cultured, identified neurones in Lymnaea stagnalis was examined. The identified neurones studied were from the buccal ganglia and the serotonin-containing cerebral giant cells (CGCs). 5-HT and its agonists were applied from puffer pipettes, whilst 5-HT antagonists were applied in the bathing medium. At 10−3 M, the 5-HT1A agonist, always produced paroxysmal depolarizing shifts (PDS) while at a lower concentration (10−4 M), it always mimicked the effects of 10−3 M 5-HT. 8-OH-DPAT (10−4 M) and 5-HT 10−3 M produced dose-dependent increases in the responses they evoked. At 10−4 M, the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide hydrochloride (m-CPBG), failed to hyperpolarize most of the neurones hyperpolarized by 5-HT. At 10−4 M, the antagonists ketanserin (5-HT2), MDL 72222 (5-HT3), and pindobind-5-HT1A (5-HT1A) consistently abolished spike generation ii spontaneously active neurones. Both ketanserin and MDL 72222 failed to block the actions of 8-OH-DPAT and only partially blocked those of 5-HT, but pindobind-5-HT1A completely, but reversibly,blocked the 8-OH-DPAT effects while greatly reducing those of 5-HT. These results suggest that 5-HT1A receptor subtypes might be involved in the hyperpolarizing responses of the CGCs and their follower motor neurones in the buccal ganglia of Lymnaea stagnalis to 5-HT. The presence of 5-HT1A receptors on these neurones can be considered to correspond with those found in mammals because their pharmacological responses resemble those of mammalian 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号