共查询到20条相似文献,搜索用时 15 毫秒
1.
Ping K. Yip Chiara Pizzasegola Stacy Gladman Maria Luigia Biggio Marianna Marino Maduka Jayasinghe Farhan Ullah Simon C. Dyall Andrea Malaspina Caterina Bendotti Adina Michael-Titus 《PloS one》2013,8(4)
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients. 相似文献
2.
Dong Liu Chaoxu Liu Junqiang Li Kazem Azadzoi Yun Yang Zhou Fei Kefeng Dou Neil W. Kowall Han-Pil Choi Fernando Vieira Jing-Hua Yang 《PloS one》2013,8(12)
Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC) inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE) analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identifies glial fibrillary acidic protein (GFAP) as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS. 相似文献
3.
肌萎缩性侧索硬化症(ALS)是运动神经元选择性死亡而导致运动功能障碍的神经性疾病,是成年人运动神经元病中最常见的疾病。已有很多学说讨论其发病机制,并且建立了ALS动物模型。随着现代生物学的发展和不同学科间的相互渗入,各种治疗策略在ALS模型实验中得到实践并有望用于临床。简要综述了ALS治疗方法在转基因动物模型中的研究进展。 相似文献
4.
C. Veyrat-Durebex P. Corcia A. Dangoumau F. Laumonnier E. Piver P. H. Gordon C. R. Andres P. Vourc’h H. Blasco 《Molecular neurobiology》2014,49(2):966-983
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is fatal for most patients less than 3 years from when the first symptoms appear. The aetiologies for sporadic and most familial forms of ALS are unknown, but genetic factors are increasingly recognized as causal in a subset of patients. Studies of disease physiology suggest roles for oxidative stress, glutamate-mediated excitotoxicity or protein aggregation; how these pathways interact in the complex pathophysiology of ALS awaits elucidation. Cellular models are being used to examine disease mechanisms. Recent advances include the availability of expanded cell types, from neuronal or glial cell culture to motoneuron–astrocyte co-culture genetically or environmentally modified. Cell culture experiments confirmed the central role of glial cells in ALS. The recent adaptation of induced pluripotent stem cells (iPSC) for ALS modeling could allow a broader perspective and is expected to generate new hypotheses, related particularly to mechanisms underlying genetic factors. Cellular models have provided meaningful advances in the understanding of ALS, but, to date, complete characterization of in vitro models is only partially described. Consensus on methodological approaches, strategies for validation and techniques that allow rapid adaptation to new genetic or environmental influences is needed. In this article, we review the principal cellular models being employed in ALS and highlight their contribution to the understanding of disease mechanisms. We conclude with recommendations on means to enhance the robustness and generalizability of the different concepts for experimental ALS. 相似文献
5.
Roberta Gabbianelli Alberto Ferri Giuseppe Rotilio† & Maria Teresa Carrì† 《Journal of neurochemistry》1999,73(3):1175-1180
We have investigated the response to oxidative stress in a model system obtained by stable transfection of the human neuroblastoma cell line SH-SY5Y with plasmids directing constitutive expression of either wild-type human Cu,Zn superoxide dismutase or a mutant of this enzyme (H46R) associated with familial amyotrophic lateral sclerosis. We report that expression of mutant H46R Cu,Zn superoxide dismutase induces a selective increase in paraquat sensitivity that is reverted by addition of D-penicillamine. Furthermore, expression of this mutant enzyme affects the activity of the endogenous wild-type enzyme both in basal conditions and in copper overloading experiments. Our data indicate that aberrant metal chemistry of this mutant enzyme is the actual mediator of oxidative stress and that concurrent impairment of the activity of wild-type endogenous enzyme compromises the cell's ability to respond to oxidative stress. 相似文献
6.
Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis 总被引:9,自引:13,他引:9
Robert J. Ferrante Susan E. Browne Leslie A. Shinobu Allen C. Bowling M. Jay Baik Usha MacGarvey Neil W. Kowall †Robert H. Brown Jr. M. Flint Beal 《Journal of neurochemistry》1997,69(5):2064-2074
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8 dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8 dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS. 相似文献
7.
Phosphatidylinositol 3-Kinase: Increased Activity and Protein Level in Amyotrophic Lateral Sclerosis 总被引:1,自引:2,他引:1
Abstract: Enzyme activities and protein levels of several protein and lipid kinases were measured in postmortem tissue from patients who died with amyotrophic lateral sclerosis (ALS) as well as from control subjects. Patients who died with ALS had increased activities and protein levels of phosphatidylinositol 3-kinase (PI 3-K) in particulate fractions of spinal cord tissue compared with control subjects. The PI 3-K activity increased with PI 3-K protein level, indicating no change in specific PI 3-K activity in ALS. No differences in PI 3-K activities were found in cytosolic fractions of spinal cord, or in motor and visual cortices, from ALS patients compared with those from controls. PI 3-K activities and protein levels were unchanged in brain tissue from patients who died with Alzheimer's disease compared with those from controls. PI 3-K is a lipid kinase that is important for cell survival and is activated in response to many growth factors. Increased PI 3-K activities in particulate fractions of spinal cord from ALS patients may be related to the increase of PI 3-K protein levels found in this tissue. The protein kinases Erk2, protein kinase B (PKB), and p70 ribosomal S6 kinase (S6K) showed no differences in activities in spinal cord tissue between ALS patients and controls. However, the amounts of PKB and S6K protein were significantly higher in ALS patients, whereas Erk2 protein amount was unchanged compared with controls. Protein kinase C activity was increased in spinal cord tissue from ALS patients, which is consistent with our previous report. The increased activity of PI 3-K in spinal cord tissue from patients with ALS implicates the involvement or activation of PI 3-K in ALS, as either a cause or a consequence of the neuron loss. The lack of up-regulation in the activities of PKB and S6K in ALS tissue supports an impairment in signal transduction cascades mediated by PI 3-K in this neurodegenerative disease. 相似文献
8.
Hiroko Miyagishi Yasuhiro Kosuge Ayumi Takano Manami Endo Hiroshi Nango Somay Yamagata-Murayama Dai Hirose Rui Kano Yoko Tanaka Kumiko Ishige Yoshihisa Ito 《Cellular and molecular neurobiology》2017,37(3):445-452
Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive, and fatal neurodegenerative disease caused by selective loss of motor neurons. Both ALS model mice and patients with sporadic ALS have increased levels of prostaglandin E2 (PGE2). Furthermore, the protein levels of microsomal PGE synthase-1 and cyclooxygenase-2, which catalyze PGE2 biosynthesis, are significantly increased in the spinal cord of ALS model mice. However, it is unclear whether PGE2 metabolism in the spinal cord is altered. In the present study, we investigated the protein level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme in prostaglandin metabolism, in ALS model mice at three different disease stages. Western blotting revealed that the 15-PGDH level was significantly increased in the lumbar spinal cord at the symptomatic stage and end stage. Immunohistochemical staining demonstrated that 15-PGDH immunoreactivity was localized in glial fibrillary acidic protein (GFAP)-positive astrocytes at the end stage. In contrast, 15-PGDH immunoreactivity was not identified in NeuN-positive large cells showing the typical morphology of motor neurons in the anterior horn. Unlike 15-PGDH, the level of PGE2 in the spinal cord was increased only at the end stage. These results suggest that the significant increase of PGE2 at the end stage of ALS in this mouse model is attributable to an imbalance of the synthetic pathway and 15-PGDH-dependent scavenging system for PGE2, and that this drives the pathogenetic mechanism responsible for transition from the symptomatic stage. 相似文献
9.
Viktor Hartung Tino Prell Christian Gaser Martin R. Turner Florian Tietz Benjamin Ilse Martin Bokemeyer Otto W. Witte Julian Grosskreutz 《PloS one》2014,9(8)
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM) has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI). High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R) and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS. 相似文献
10.
Protein Oxidative Damage in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis 总被引:6,自引:4,他引:6
Paula K. Andrus Timothy J. Fleck Mark E. Gurney Edward D. Hall 《Journal of neurochemistry》1998,71(5):2041-2048
Abstract: The Gly93→Ala mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometric measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but pre-disease), 100 (~50% loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN(SOD1-G93A)G1H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100–120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120-day-old TgN(SOD1-G93A)G1H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function. 相似文献
11.
Usarek E Kuźma-Kozakiewicz M Schwalenstöcker B Kaźmierczak B Münch C Ludolph AC Barańczyk-Kuźma A 《Neurochemical research》2006,31(5):597-602
Tau is a protein involved in regulation of microtubule stability, axonal differentiation and transport. Alteration of retrograde transport may lead to motor neuron degeneration. Thus alternative mRNA splicing and expression of tau isoforms were studied in a transgenic mouse model harboring the human SOD1 G93A mutation. The studies were performed on cortex, hippocampus and spinal cord of 64- and 120-day-old animals (presymptomatic and symptomatic stage) and wild type controls. Exon 10 was found in all studied tissues. The 2N isoform containing exons 2 and 3 (+2+3) and the 1N (+2−3) predominated over the 0N (−2−3) in brain regions of the studied mice. The 2N expression was significantly lower in cortex and hippocampus of symptomatic animals compared to analogue control tissues. The decrease in 2N expression resulted in lower levels of total tau mRNA and tau protein. No changes in tau expression were observed in spinal cord of studied animals. 相似文献
12.
Noga Gershoni-Emek Arnon Mazza Michael Chein Tal Gradus-Pery Xin Xiang Ka Wan Li Roded Sharan Eran Perlson 《Molecular & cellular proteomics : MCP》2016,15(2):506-522
Synapse disruption takes place in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the mechanistic understanding of this process is still limited. We set out to study a possible role for dynein in synapse integrity. Cytoplasmic dynein is a multisubunit intracellular molecule responsible for diverse cellular functions, including long-distance transport of vesicles, organelles, and signaling factors toward the cell center. A less well-characterized role dynein may play is the spatial clustering and anchoring of various factors including mRNAs in distinct cellular domains such as the neuronal synapse. Here, in order to gain insight into dynein functions in synapse integrity and disruption, we performed a screen for novel dynein interactors at the synapse. Dynein immunoprecipitation from synaptic fractions of the ALS model mSOD1G93A and wild-type controls, followed by mass spectrometry analysis on synaptic fractions of the ALS model mSOD1G93A and wild-type controls, was performed. Using advanced network analysis, we identified Staufen1, an RNA-binding protein required for the transport and localization of neuronal RNAs, as a major mediator of dynein interactions via its interaction with protein phosphatase 1–beta (PP1B). Both in vitro and in vivo validation assays demonstrate the interactions of Staufen1 and PP1B with dynein, and their colocalization with synaptic markers was altered as a result of two separate ALS-linked mutations: mSOD1G93A and TDP43A315T. Taken together, we suggest a model in which dynein''s interaction with Staufen1 regulates mRNA localization along the axon and the synapses, and alterations in this process may correlate with synapse disruption and ALS toxicity.Amyotrophic lateral sclerosis (ALS)1 is an adult-onset progressive neurodegenerative disease that targets both upper and lower motor neurons via an unknown mechanism, leading to paralysis and eventually death. Pathological changes affecting synapses in both the primary motor cortex and the peripheral neuromuscular junctions (NMJs) are considered an early occurrence in ALS, often preceding the degeneration of the axons and clinical symptomatic onset (1). Although synapse disruption is common to many neurodegenerative diseases and the molecular mechanisms underlying synapse stabilization and maintenance are of keen interest, the exact mechanisms governing synapse disruption have yet to be understood.Both upper and lower motor neurons are highly polarized cells, with axons that are several orders of magnitude longer than the diameter of their cell bodies. To survive and maintain proper function, these neurons depend on active intracellular transport (2). The molecular motor kinesin drives transport from the cell body to the nerve periphery, supplying proteins, lipids, RNAs, and other essential materials to the synapse. The dynein/dynactin protein complex drives retrograde transport, moving damaged proteins for degradation, as well as critical signaling molecules such as neurotrophins, to the cell body (3). Dynein is a pleiotropic cellular motor, whose function in numerous cellular pathways may be regulated by specific interactions with different binding partners (4, 5). In addition to its canonical role as a motor protein, dynein has been shown to have an anchoring role as well. For example, the interaction of dynein with microtubule binding nuclear mitotic apparatus protein (NuMA)-protein coupled receptor 1 (LGN) allows dynein to be cortically anchored in order to function in the spindle-positioning process during cell division (4, 6). In neurons, dynein interacts with the neuronal adhesion molecule neural-cell-adhesion-molecule-180, which leads to the specific recruitment of dynein to the cell cortex for synapse stabilization (7). Another example, best characterized in the oocyte, is mRNA anchoring at specific cellular locations (8). Thus, dynein can serve as a motor conducting long-distance signaling, as well as an anchoring agent at distinct domains like the synapse. The switch between dynein''s different capacities may be regulated by its phosphorylation state, which may be mediated by protein phosphatase 1 (PP1) (9, 10).Transport deficits are common in many neurodegenerative disorders (3, 11, 12). In the ALS mouse model SOD1G93A, transport dysfunction can be observed as early as at the embryonic stage (13). Although mutations in dynein or its activator dynactin were demonstrated to lead to synapse disruption and neurodegeneration (14–16), the effect of the mutations in slowing down dynein-mediated transport is not sufficient to create the harsh neurodegeneration observed in ALS (17, 18), suggesting an additional mechanism. One possibility is a switch in the nature of the retrogradely transported cargo from survival signals to stress signals (19). Hence, a change in the composition of dynein complexes may underlie neurodegenerative and synapse elimination mechanisms.General proteomic screens of protein complexes at the synapse have presented high complexity of both protein composition and signaling network architecture (20–23). Proteomics following immunoprecipitation of receptors such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate from synaptosomes reveal large protein complexes, up to 3000 kDa that can incorporate up to 185 proteins (21, 24). Notably, many of these proteins are involved in localized protein synthesis (25).Interestingly, dynein was found to be one of the proteins identified from synaptosome proteomics (26), suggesting that dynein plays a role in maintaining synaptic function. Although synapse disruption is one of the early events occurring in many neurodegenerative diseases, the identity of dynein complexes in the synapse and molecular mechanisms of synapse protection are still largely unknown.Here, we sought to characterize synaptic dynein complexes using a differential proteomic screen of the SOD1G93A mouse model for ALS. The SOD1G93A mouse model is the most studied model for ALS, manifesting many ALS phenotypes, including upper and lower motoneuron degeneration, synaptic disruption, and alterations in dynein functions. Here, we purified synaptosomes from brains of SOD1G93A and control mice, followed by dynein-intermediate chain immunoprecipitation and mass spectrometry analysis to identify changes in dynein interactors. We further utilized the Advanced Network Analysis Tool (ANAT) (27) to predict potential pathways connecting dynein to the immunoprecipitated proteins in the ALS model and control mice. Our results demonstrate distinct populations of dynein-interacting proteins in ALS and in control mice, in addition to several common interactors. In both networks, the RNA-binding protein Staufen1 appeared as a predicted central node linking dynein to PP1B, a component of the catalytic subunit of PP1. In vitro and in vivo validation of the interaction and synaptic colocalization of both Staufen1 and PP1B with dynein, together with altered localization caused by ALS-linked mutations, suggest a role for dynein in the localization of Staufen1 ribonucleoproteins (RNPs) in neurodegenerative diseases such as ALS. 相似文献
13.
Amyotrophic Lateral Sclerosis is a devastating neurological disease that is inevitably fatal after 3–5 years duration. Treatment options are minimal and as such new therapeutic modalities are required. In this review, we discuss the role of the myostatin pathway as a modulator of skeletal muscle mass and therapeutic approaches using biological based therapies. Both monoclonal antibodies to myostatin and a soluble receptor decoy to its high affinity receptor have been used in clinical trials of neuromuscular diseases and while there have been efficacy signals with the latter approach there have also been safety issues. Our approach is to target the high affinity receptor-binding site on myostatin and to develop a next generation set of therapeutic reagents built on a novel protein scaffold. This is the natural single domain VNAR found in sharks which is extremely versatile and has the ability to develop products with superior properties compared to existing therapeutics. 相似文献
14.
Vahid M. Harandi Susanne Lindquist Shrikant Shantilal Kolan Thomas Br?nnstr?m Jing-Xia Liu 《PloS one》2014,9(10)
Amyotrophic lateral sclerosis (ALS) is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3–5 years after diagnosis. Neurotrophic factors (NTFs) are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR) technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) in limb muscles and extraocular muscles (EOMs) from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients. 相似文献
15.
16.
Pilar Larrodé Ana Cristina Calvo Laura Moreno-Martínez Miriam de la Torre Leticia Moreno-García Nora Molina Tomás Castiella Cristina Iñiguez Luis Fernando Pascual Francisco Javier Miana Mena Pilar Zaragoza Santiago Ramón y Cajal Rosario Osta 《Molecular neurobiology》2018,55(1):1-12
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS. 相似文献
17.
Lorenna Giannini Alves Moreira Livia Costa Pereira Priscila Ramalho Drummond Joelma Freire De Mesquita 《PloS one》2013,8(12)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with familial inheritance (fALS) in 5% to 10% of cases; 25% of those are caused by mutations in the superoxide dismutase 1 (SOD1) protein. More than 100 mutations in the SOD1 gene have been associated with fALS, altering the geometry of the active site, protein folding and the interaction between monomers. We performed a functional analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in 124 fALS SOD1 mutants. Eleven different algorithms were used to estimate the functional impact of the replacement of one amino acid on protein structure: SNPs&GO, PolyPhen-2, SNAP, PMUT, Sift, PhD-SNP, nsSNPAnalyzer, TANGO, WALTZ, LIMBO and FoldX. For the structural analysis, theoretical models of 124 SNPs of SOD1 were created by comparative modeling using the MHOLline workflow, which includes Modeller and Procheck. Models were aligned with the native protein by the TM-align algorithm. A human-curated database was developed using the server side include in Java, JMOL. The results of this functional analysis indicate that the majority of the 124 natural mutants are harmful to the protein structure and thus corroborate the correlation between the reported mutations and fALS. In the structural analysis, all models showed conformational changes when compared to wild-type SOD1, and the degree of structural alignment varied between them. The SOD1 database converge structural and functional analyses of SOD1; it is a vast resource for the molecular analysis of amyotrophic lateral sclerosis, which allows the user to expand his knowledge on the molecular basis of the disease. The SOD1 database is available at http://bioinfogroup.com/database. 相似文献
18.
Barańczyk-Kuźma A Usarek E Kuźma-Kozakiewcz M Kaźmierczak B Gajewska B Schwalenstocker B Ludolph AC 《Neurochemical research》2007,32(3):415-421
The work is a continuation of studies on tau expression and alternative splicing in the central nervous system of transgenic
mice harboring human SOD1 with G93A amyotrophic lateral sclerosis (ALS)-associated mutation. Since age is an important risk
factor for ALS, we expanded the studies into younger animals (age 5 and 25 days). We also included cerebellum, a structure
not studied in the context of neurodegeneration in ALS. We found decreased total tau-mRNA expression in hippocampus but not in cortex and spinal cord of young transgenics, and a
lack of exon 10 in 5-day-old mice. In cerebellum, the total tau-mRNA expression was increased in transgenic animals during
the whole period of life, however at the symptomatic stage of ALS (age 120 days) the level of protein was decreased.
It can be concluded that the SOD1 G93A mutation causes early alterations of tau expression in cns, which are not exclusively
restricted to the upper and lower motor neuron. 相似文献
19.
Yu Zhang Hang Li Chen Yang Dan-Feng Fan Da-Zhi Guo Hui-Jun Hu Xiang-En Meng Shu-Yi Pan 《Neurochemical research》2016,41(4):770-778
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and accumulating evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. The aim of this work was to investigate the effect of treatment with hydrogen molecule on the development of disease in mutant SOD1 G93A transgenic mouse model of ALS. Treatment of mutant SOD1 G93A mice with hydrogen-rich saline (HRS, i.p.) significantly delayed disease onset and prolonged survival, and attenuated loss of motor neurons and suppressed microglial and glial activation. Treatment of mutant SOD1 G93A mice with HRS inhibited the release of mitochondrial apoptogenic factors and the subsequent activation of downstream caspase-3. Furthermore, treatment of mutant SOD1 G93A mice with HRS reduced levels of protein carbonyl and 3-nitrotyrosine, and suppressed formation of reactive oxygen species (ROS), peroxynitrite, and malondialdehyde. Treatment of mutant SOD1 G93A mice with HRS preserved mitochondrial function, marked by restored activities of Complex I and IV, reduced mitochondrial ROS formation and enhanced mitochondrial adenosine triphosphate synthesis. In conclusion, hydrogen molecule may be neuroprotective against ALS, possibly through abating oxidative and nitrosative stress and preserving mitochondrial function. 相似文献
20.
Inducible Nitric Oxide Synthase Up-Regulation in a Transgenic Mouse Model
of Familial Amyotrophic Lateral Sclerosis 总被引:6,自引:0,他引:6
Gabriele Almer Slobodanka Vukosavic Norma Romero & Serge Przedborski 《Journal of neurochemistry》1999,72(6):2415-2425
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS. 相似文献