首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang  Wan-lin  Sun  Albert Y. 《Neurochemical research》1998,23(11):1387-1394
Paraquat was taken up by PC12 cells in a carrier-mediated, saturable manner. When PC12 cells were permeabilized with digitonin (50 g/ml) lipid peroxidation was observed after paraquat treatment in the presence of NADPH and chelated iron. The fact that lipid peroxidation preceded the appearance of LDH release provides positive evidence that lipid peroxidation may be one of the important factors leading to cytotoxicity of cells. Furthermore, the fact that addition of superoxide dismutase, catalase and promethazine efficiently blocked the malondialdehyde formation and attenuated the cell death indicated the involvement of reactive oxygen radicals in mediating the cytotoxicity induced by paraquat. Taken together the results present in vitro evidence that neurotoxicity of paraquat may be a consequence of cellular lipid peroxidation, which leads to cell death and may have great implications in assessing the risk of exposure to paraquat in Parkinson's disease.  相似文献   

2.
Ethanol-Induced Cell Death by Lipid Peroxidation in PC12 Cells   总被引:8,自引:0,他引:8  
Free radical generation is hypothesized to be the cause of alcohol-induced tissue injury. Using fluorescent cis-parinaric acid and TBARS, lipid peroxidation was shown to be increased in the presence of trace amounts of free ferrous ion in PC12 cells. This increase in lipid peroxidation was enhanced by ethanol in a dose dependent manner and also correlated with loss of cell viability, as measured by increased release of lactate dehydrogenase (LDH). Resveratrol, a potent antioxidant, had a protective effect against lipid peroxidation and cell death. These findings strongly suggest that ethanol-induced tissue injury and cell death is a free radical mediated process, and may be important in alcohol-related premature aging and other degenerative diseases.  相似文献   

3.
Oxaliplatin is included in a number of effective combination regimens used as first and subsequent lines of therapy for metastatic colorectal cancer. Accumulating evidence indicates that autophagy plays a significant role in response to cancer therapy. However, the role of autophagy in oxaliplatin-induced cell death remains to be clarified. In this study, we showed that oxaliplatin induced cell death and autophagy in Caco-2 colorectal cancer cells. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or Beclin1) enhanced the cell death and reactive oxygen species (ROS) production induced by oxaliplatin in Caco-2 cells. Blocking oxaliplatin-induced ROS production by using ROS scavengers (NAC or Tiron) decreased autophagy. Furthermore, numerous dilated endoplasmic reticula (ER) were present in oxaliplatin-treated Caco-2 cells, and blocking ER stress by RNA interference against candidate of metastasis-1 (P8) and C/EBP-homologous protein (CHOP) decreased autophagy and ROS production. Taken together, these data indicate that oxaliplatin activates autophagy as a cytoprotective response via ER stress and ROS in human colorectal cancer cells.  相似文献   

4.
《Autophagy》2013,9(2):158-159
The population size of the T cells is tightly regulated. The T cell number drastically increases in response to their specific antigens. Upon antigen clearance, the T cell number decreases over time. Apoptosis, also called type I programmed cell death, plays an important role in eliminating T cells. The role of autophagic cell death, also called type II programmed cell death, is unclear in T cells. Our recent work demonstrated that autophagy is induced in both Th1 and Th2 cells. Both TCR signaling and IL-2 increase autophagy in T cells, and JNK MAP kinases are required for the induction of autophagy in T cells, whereas caspases and mTOR inhibit autophagy in T cells. Autophagy is required for mediating growth factor withdrawal-dependent cell death in T cells. Here, we hypothesize that autophagic cell death plays an important role in T cell homeostasis.

Addendum to:

Autophagy is Induced in CD4+ T Cells and Important for the Growth Factor-Withdrawal Cell Death

C. Li, E. Capan, Y. Zhao, J. Zhao, D. Stolz, S.C. Watkins, S. Jin and B. Lu

J Immunol 2006; 177:5163-8  相似文献   

5.
A major component of Alzheimer's disease plaque amyloid β protein (βAP) showed the cytolytic activity to rat pheochromocytoma PC12 cells. Nuclear morphological study revealed that βAP-induced cytolytic activity is due to necrotic cell death, rather than apoptotic cell death. To examine the molecular machinery of βAP-induced necrotic cell death in detail, I investigated the direct involvement of caspase. When nerve growth factor-treated and -untreated PC12 cells were incubated with the synthesized tetrapeptide inhibitors of caspase, YVAD-CHO (Ac-Tyr-Val-Ala-Asp-CHO) or DEVD-CHO (Ac-Asp-Glu-Val-Asp-CHO), βAP-induced necrotic cell death was prevented. In addition, the interleukin-1β converting enzyme (ICE) subfamily activation preceded CPP32 subfamily activation during βAP-induced necrotic cell death. On the basis of these findings, I suggest that βAP induces necrotic cell death mediated by the ICE cascade and that the ICE cascade may possibly be involved in Alzheimer's disease.  相似文献   

6.
Neuronal damage in certain cellular populations in the brain has been linked to oxidative stress accompanied by an elevation in intracellular calcium. Many questions remain about how such oxidative stress occurs and how it affects calcium homeostasis. Glutathione (GSH) is a major regulator of cellular redox status in the brain, and lowered GSH levels have been associated with dopaminergic cell loss in Parkinson’s disease (PD). We found that transfection of antisense oligomers directed against glutamylcysteine synthetase (GCS), the rate-limiting enzyme in GSH synthesis, into PC12 cells resulted in decreased GSH and increased levels of ROS. Decreased GSH levels also correlated with an increase in intracellular calcium levels. Data from this study suggest that dopaminergic neurons are very sensitive to decreases in the internal oxidant buffering capacity of the cell caused by reductions in GSH levels, and that alterations in this parameter can result in disruption of calcium homeostasis and cell death. These results may be of particular significance for therapeutic treatment of PD, as those dopaminergic neurons that are spared in this disorder appear to contain the calcium binding protein, calbindin.  相似文献   

7.
8.
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.  相似文献   

9.
Coibamide A is an N-methyl-stabilized depsipeptide that was isolated from a marine cyanobacterium as part of an International Cooperative Biodiversity Groups (ICBG) program based in Panama. Previous testing of coibamide A in the NCI in vitro 60 cancer cell line panel revealed a potent anti-proliferative response and “COMPARE-negative” profile indicative of a unique mechanism of action. We report that coibamide A is a more potent and efficacious cytotoxin than was previously appreciated, inducing concentration- and time-dependent cytotoxicity (EC50<100 nM) in human U87-MG and SF-295 glioblastoma cells and mouse embryonic fibroblasts (MEFs). This activity was lost upon linearization of the molecule, highlighting the importance of the cyclized structure for both anti-proliferative and cytotoxic responses. We show that coibamide A induces autophagosome accumulation in human glioblastoma cell types and MEFs via an mTOR-independent mechanism; no change was observed in the phosphorylation state of ULK1 (Ser-757), p70 S6K1 (Thr-389), S6 ribosomal protein (Ser-235/236) and 4EBP-1 (Thr-37/46). Coibamide A also induces morphologically and biochemically distinct forms of cell death according to cell type. SF-295 glioblastoma cells showed caspase-3 activation and evidence of apoptotic cell death in a pattern that was also seen in wild-type and autophagy-deficient (ATG5-null) MEFs. In contrast, cell death in U87-MG glioblastoma cells was characterized by extensive cytoplasmic vacuolization and lacked clear apoptotic features. Cell death was attenuated, but still triggered, in Apaf-1-null MEFs lacking a functional mitochondria-mediated apoptotic pathway. From the study of ATG5-null MEFs we conclude that a conventional autophagy response is not required for coibamide A-induced cell death, but likely occurs in dying cells in response to treatment. Coibamide A represents a natural product scaffold with potential for the study of mTOR-independent signaling and cell death mechanisms in apoptotic-resistant cancer cells.  相似文献   

10.
1. Aims: Agmatine is an endogenous guanido amine and has been shown to be neuroprotective in vitro and in vivo. The aims of this study are to investigate whether agmatine is protective against cell death induced by different agents in cultured neurons and PC12 cells.2. Methods: Cell death in neurons, cultured from neonatal rat cortex, was induced by incubating with (a) NMDA (100 M) for 10 min, (b) staurosporine (protein kinase inhibitor, 100 nM) for 24 h, and (c) calcimycin (calcium ionophore, 100 nM) for 24 h in the presence and absence of agmatine (1 M to 1 mM). Cell death in PC12 cells was induced by exposure to glutamate (10 mM), staurosporine (100 nM), and calcimycin (100 nM). The activity of lactate dehydrogenase (LDH) in the medium was measured as the marker of cell death and normalized to cellular LDH activity.3. Results: Agmatine significantly reduced the medium LDH in NMDA-treated neurons but failed to reduce the release of LDH induced by staurosporin or calcimycin. In PC12 cells, agmatine significantly reduced LDH release induced by glutamate exposure, but not by staurosporine or calcimycin. Agmatine itself neither increased LDH release nor directly inhibited the enzyme activity.4. Conclusion: We conclude that agmatine protects against NMDA excitotoxicity in neurons and PC12 cells but not the cell death induced by protein kinase blockade or increase in cellular calcium.  相似文献   

11.
Betulinic acid (BA), a pentacyclic triterpene of natural origin, has been demonstrated to have varied biologic activities including anti-viral, anti-inflammatory, and anti-malarial effects; it has also been found to induce apoptosis in many types of cancer. However, little is known about the effect of BA on normal cells. In this study, the effects of BA on normal neuronal cell apoptosis and the mechanisms involved were studied using differentiated PC12 cells as a model. Treatment with 50 μM BA for 24 h apparently induced PC12 cell apoptosis. In the early stage of apoptosis, the level of intracellular reactive oxygen species (ROS) increased. Afterwards, the loss of the mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3 occurred. Treatment with antioxidants could significantly reduce BA-induced PC12 cell apoptosis. In conclusion, we report for the first time that BA induced the mitochondrial apoptotic pathway in differentiated PC12 cells through ROS.  相似文献   

12.
Morphine abuse in treating severe and chronic pain has become a worldwide problem. But, chronic morphine exposure can cause memory impairment with its mechanisms not fully elucidated by past research sstudies which all focused on the harmful effects of morphine. Autophagy is an important pathway for cells to maintain survival. Here we showed that repeated morphine injection into C57BL/6 mice at a dose of 15 mg/kg per day for 7 days activated autophagic flux mainly in the hippocampi, especially in neurons of hippocampal CA1 region and microglia, with spatial memory impairment confirmed by Morris water maze test. Autophagy inhibition by 3-methyladenine obviously aggravates this morphine-induced memory impairment, accompanied with increased cell deaths in stratum pyramidale of hippocampal CA1, CA3, and DG regions and the activation of microglia to induce inflammation in hippocampus, such as upregulated expression of TNF-α, IL-1β, IL-6, and iNOS, as well as NF-κB’ s activation, while morphine alone promoted microglial immunosuppression in hippocampus with autophagy activation which was also confirmed in primary microglia. Taken together, our data indicates that autophagy activating in hippocampal cells can alleviate the memory impairment caused by morphine, by decreasing neuronal deaths in hippocampus and suppressing inflammation in hippocampal microglia, implying that modulating the activation of autophagy might be a promising method to prevent or treat the memory impairment caused by morphine.  相似文献   

13.
Calcium ion is a secondary messenger that mediates a variety of physiological responses of neurons, including cell survival responses. To determine the role of calcium in regulating neuronal survival and death, we examined whether chelation of extracellular calcium with EGTA induces caspase-dependent apoptotic cell death and whether glycogen synthase kinase-3 is involved in EGTA-induced cell death in PC12 cells. EGTA increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation and fragmentation accompanied by caspase activation. EGTA increased GRP78 protein expression, suggesting that EGTA induces ER stress. Glycogen synthase kinase-3 inhibitors prevented EGTA-induced apoptosis. In addition, nerve growth factor and insulin growth factor-I completely blocked EGTA-induced cell death. Moreover, caspase-3 activation was inhibited by glycogen synthase kinase-3 inhibitors. These results suggest that chelation of extracellular calcium with EGTA induces caspase-dependent apoptosis, and the activation of glycogen synthase kinase-3 is involved in the death of PC12 cells.  相似文献   

14.
Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death.  相似文献   

15.
16.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

17.
The addition of rotenone (inhibitor of respiratory complex I), 3-nitropropionic acid (complex II inhibitor), harmine (inhibitor of complexes I and II) and cyclosporin A (CsA, an inhibitor of the mitochondrial permeability transition) reduced the nuclear damage, loss in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with MG132, a proteasome inhibitor. Meanwhile, rotenone, 3-nitropropionic acid and harmine did not affect the inhibitory effect of CsA or trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) on the cytotoxicity of MG132. The results suggest that proteasome inhibition-induced mitochondrial dysfunction and cell injury may be attenuated by the inhibitions of respiratory chain complex I and II. The cytoprotective effect of the mitochondrial permeability transition prevention not appears to be modulated by respiratory complex inhibition.  相似文献   

18.

Background

The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways.

Methodology/Principal Findings

In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death.

Conclusion/Significance

Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.  相似文献   

19.
The secretome-mediated responses over cellular physiology are well documented. Stem cells have been ruling the field of secretomics and its role in regenerative medicine since the past few years. However, the mechanistic aspects of secretome-mediated responses and the role of other cells in this area remain somewhat elusive. Here, we investigate the effects of secretome-enriched conditioned medium (CM) of neuronally differentiated PC12 cells on the neuronal differentiation of human mesenchymal stem cells (hMSCs). The exposure to CM at a ratio of 1:1 (CM: conditioned medium of PC12 cells) led to neuronal induction in hMSCs. This neuronal induction was compared with a parallel group of cells exposed to nerve growth factor (NGF). There was a marked increase in neurite length and expression of neuronal markers (β-III tubulin, neurofilament-M (NF-M), synaptophysin, NeuN in exposed hMSCs). Experimental group co-exposed to NGF and CM showed an additive response via MAPK signaling and directed the cells particularly towards cholinergic lineage. The ability of CM to enhance the neuronal properties of stem cells could aid in their rapid differentiation into neuronal subtypes in case of stem cell transplantation for neuronal injuries, thus broadening the scope of non-stem cell-based applications in the area of secretomics.  相似文献   

20.
黄晓  李发强 《植物学报》2016,51(6):859-862
细胞自噬是真核生物中一种由液泡或溶酶体介导的, 对细胞内物质进行周转的重要代谢机制。在植物中, 细胞自噬作为一种重要的降解手段, 参与营养物质的重新分配、受损蛋白和细胞器的清除及生物和非生物胁迫的响应等过程。此外, 细胞自噬在各种程序性细胞死亡中也起着重要作用, 该文主要综述了近几年来在此方面的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号