首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated rat liver perfusion system has been extensively used for metabolic and functional studies. Results derived from the application of this system may reflect true biochemical changes but they may also be associated with some structural changes. This study was undertaken to correlate the cytological changes and functional integrity of isolated rat liver perfused in vitro at normal physiological temperature (37 degrees C) and 30 degrees C, using a non-recirculating system. The livers were perfused for 3 hours with modified Ham's F10 culture medium supplemented with thyroxine hormone (T4). The hepatocyte structural integrity was studied by light microscopy, transmission and scanning electron microscopy. The triiodothyronine (T3) and T4 hormones in the perfusion medium and the effluent fractions were assessed by radioimmunoassay. The livers perfused at 30 degrees C remained morphologically intact at the ultrastructural level for 3 hours whilst at 37 degrees C, hepatocytes in the centrilobular zone exhibited marked structural alterations. The percentage of T4 uptake was significantly higher (P less than 0.01) in livers perfused at 30 degrees C (50.8 +/- 7.7% vs 38 +/- 7.7%, 37 degrees C), but the net T3 output (3.16 +/- 1.04 micrograms) and the conversion of T4 to T3 (4 +/- 0.62%) were significantly higher (P less than 0.001) in livers perfused at 37 degrees C in comparison to livers perfused at 30 degrees C (1.61 +/- 0.84 micrograms and 1.68 +/- 0.76%, respectively). In conclusion, at 30 degrees C the hepatic T4 uptake is not inhibited, but the rate of T4 to T3 conversion has decreased, additionally the livers remain morphologically well preserved throughout the experimental period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have studied by quantitative electron microscopy the relationship of specific hepatic cellular organelles to glycogen synthesis using dexamethasone, a potent synthetic glucocorticoid, to induce glycogen deposition in livers of adrenalectomized rats. Chemical and ultrastructural glycogen determinations revealed that the livers of fasted adrenalectomized rats had very low glycogen levels. Dexamethasone caused a time-related increase in hepatic glycogen which was the result of increases in the number of hepatocytes depositing glycogen and the amount of glycogen in each cell. The surface density of smooth endoplasmic reticulum (SER) in centrilobular and periportal hepatocytes also increased after treatment with dexamethasone; this increase preceded glycogen deposition. The newly deposited glycogen was spatially associated with membranes of SER, and a continued increase in SER surface density was correlated temporally with the increasing glycogen volume density. In both centrilobular and periportal hepatocytes, the suface density of rough endoplasmic reticulum (RER) initially decreased after dexamethasone administration but later increased. These data support the hypothesis that dexamethasone-induced enhancement of SER is functionally associated with the increase in glycogen, and that although the initial increase in SER may occur through transformation of RER to SER, later increases in SER require synthesis of new membranes.  相似文献   

3.
We examined the effects of hypoxia and reoxygenation in isolated, perfused rat livers. Hypoxia induced by a low rate of perfusion led to near anoxia confined to centrilobular regions of the liver lobule. Periportal regions remained normoxic. Within 15 min, anoxic centrilobular hepatocytes developed surface blebs that projected into sinusoids through endothelial fenestrations. Periportal hepatocytes were unaffected. Both scanning and transmission electron microscopy suggested that blebs developed by transformation of preexisting microvilli. Upon reoxygenation by restoration of a high rate of perfusion, blebs disappeared. Other changes included marked shrinkage of hepatocytes, enlargement of sinusoids, and dilation of sinusoidal fenestrations. There was also an abrupt increase in the release of lactate dehydrogenase and protein after reoxygenation, and cytoplasmic fragments corresponding in size and shape to blebs were recovered by filtration of the effluent perfusate. We also studied phalloidin and cytochalasin D, agents that disrupt the cytoskeleton. Both substances at micromolar concentrations caused rapid and profound alterations of cell surface topography. We conclude that hepatic tissue is quite vulnerable to hypoxic injury. The morphological expression of hypoxic injury seems mediated by changes in the cortical cytoskeleton. Reoxygenation causes disappearance of blebs and paradoxically causes disruption of cellular volume control and release of blebs as cytoplasmic fragments. Such cytoplasmic shedding provides a mechanism for selective release of hepatic enzymes by injured liver tissue.  相似文献   

4.
In order to examine the pathways of hepatic glycogen repletion in the periportal and perivenous zones of the liver, [1-13C]glucose (99% enriched) was infused intraduodenally into conscious, 24-h fasted rats for 3 h. The liver was then quickly perfused in situ, and the cytoplasmic contents of the periportal and perivenous hepatocytes were selectively sampled by modification of the dual-digitonin-pulse technique (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). The 13C isotopic enrichment at each carbon position of the glucosyl units of hepatic glycogen was determined by 13C NMR and that of the C-1 position by gas chromatography-mass spectroscopy. From comparison of hepatic glycogen repleted by direct incorporation of plasma glucose (glucose----glucose-6-P----glucose-1-P----UDP-glucose----glycogen) was calculated to be 29% in the periportal zone and 35% in the perivenous zone, assuming equal glycogen synthetic rates within the two zones. Thus, the majority of glycogen is derived by an indirect route (glucose--------3-carbon unit--------glucose --------UDP-glucose--------glycogen) in both the periportal zone and in the perivenous zone. In conclusion, in a 24-h fasted rat there does not appear to be a major difference between the periportal and perivenous hepatocytes in the percent of glycogen synthesized by the direct pathway following a glucose load.  相似文献   

5.
In order to examine glucose metabolism in liver grafts after cold ischemia and reperfusion, the heterogeneous lobular distribution pattern of glycogen content and glucose-6-phosphatase activity was studied using histochemical methods. The characteristic heterogeneous lobular distribution pattern of glycogen and glucose-6-phosphatase was maintained after preservation and reperfusion. However, it appeared that glycogen content decreased in both periportal and centrilobular hepatocytes after reperfusion. The glycogen decrease was higher in periportal hepatocytes. Glucose-6-phosphatase activity was maintained after reperfusion in most of the cases in periportal hepatocytes. In centrilobular hepatocytes, more cases showed a decrease in enzyme activity. It is suggested that ischemia-reperfusion mainly affects the glycogen content in both periportal and centrilobular hepatocytes and that centrilobular glucose-6-phosphatase activity is more sensitive to ischemia-reperfusion injury than periportal hepatocytes.  相似文献   

6.
A simple method which avoids the use of perfusion with calcium free buffer, hydrolytic enzymes and detergents has been developed to obtain fresh hepatocytes from periportal and pericentral regions of the liver lobule. Cylindrical plugs (200 x 500 microns) of periportal and pericentral areas of the rat liver lobule weighing about 1 mg were collected with a micropunch from fresh or perfused liver. Ninety percent of cells were intact as assessed from trypan blue staining. Glutamine synthetase activity was detected predominantly (ca. 85%) in plugs isolated from pericentral regions indicating that this method allows selective harvesting of pure sublobular zones of the liver lobule. Rates of oxygen uptake measured at 25 degrees C by plugs from livers perfused in the anterograde direction were 56 +/- 5 and 33 +/- 7 mumol/g/h by periportal and pericentral plugs, respectively, values similar to data obtained from the intact organ. This method provides new opportunities to study the regulation of basic metabolic processes in cells from sublobular areas under nearly physiological conditions.  相似文献   

7.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

8.
The fine structure of hepatocytes from rats maintained on a controlled feeding schedule are described. Liver samples were processed for electron microscopy, histochemistry and chemical determinations of glycogen at precise time-intervals following a 30-hour fast and a 2-hour meal. Hepatocytes from 30-hour-fasted rats with extremely low hepatic glycogen levels were devoid of glycogen particles. Centrilobular cells showed areas of the cytoplasm rich in vesicles of smooth endoplasmic reticulum (SER) while periportal hepatocytes contained less extensive regions of SER. Soon after feeding the fasted rats, glycogen particles appeared in regions of the cell rich in SER. Centrilobular hepatocytes contained numerous glycogen areas which were infiltrated with tubules of SER, while periportal cells showed dense glycogen deposits with SER restricted to the periphery of the masses of glycogen. Throughout glycogen deposition each glycogen particle was closely associated with membranes of SER until maximum glycogen deposition was achieved 12 hours after initiation of feeding. At this point SER was reduced to the lowest amounts of the time-periods studied. During stages of glycogen depletion SER proliferated and reached the highest concentration measured in this study. Tubules of SER were present throughout the glycogen masses of centrilobular hepatocytes, whereas in periportal cells the organelle was restricted to the periphery of the glycogen masses. It is concluded that SER is associated with glycogen particles in rat hepatocytes during both deposition and depletion of glycogen.  相似文献   

9.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

10.
Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting 3H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions.  相似文献   

11.
Summary The three-dimensional structure of endothelial cells in the hepatic sinusoids of the rat was studied by application of light- and electron microscopy on Golgi-impregnated specimens. A number of endothelial cells could thus be individually delineated throughout the hepatic lobules. The cytoplasm, showing heavy silver deposits, consists of two distinct areas, a thick and thin portion. The thick portion, issuing from the region of the perikaryon, branches and tapers toward the cell periphery. The thin portion, occupying the remainder of the cytoplasm, consists largely of highly fenestrated sieve plates. Some intralobular variation can be noted; the thick portion of the endothelial cells is well developed in the periportal zone, while the cells in the centrilobular zone are relatively rich in thin portions. In addition, the area of distribution of an individual endothelial cell is larger in the centrilobular sinusoids than in the periportal zone. Some endothelial cells also possess unique cytoplasmic processes projecting into the intercellular space between hepatocytes and connecting the sinusoidal walls of neighboring sinusoids. These processes may anchor the endothelial cells to the hepatic plates.  相似文献   

12.
A technique is described which allows preparations of hepatocytes, enriched in either periportal or perivenous hepatocytes ('PP-cells' and 'PV-cells' respectively), in a yield of about 30-50% compared with control cell preparations. The liver is first perfused for 40-60s with digitonin (4 mg/ml) to destroy selectively either the periportal or the perivenous part of the microcirculatory unit, and then the remaining hepatocytes are isolated by the ordinary collagenase perfusion technique. In periportal cells the activities of alanine aminotransferase and pyruvate kinase were 29.4 and 18.7 mumol/min per mg of DNA respectively. The rate of gluconeogenesis was 0.402 mumol/min per mg of DNA. In perivenous cells the corresponding values were 9.55, 22.1 and 0.244 mumol/min per mg of DNA respectively. These data support the concept of a zonation of glucose metabolism within the microcirculatory unit of the liver, with the afferent part (periportal zone) having a 2-fold, more active gluconeogenesis than the efferent part (perivenous zone).  相似文献   

13.
The effect of gemfibrozil on the fine structure of peroxisomes across the rat liver lobule was investigated by light and electron microscopy using the alkaline diaminobenzidine (DAB) medium for the visualization of catalase peroxidatic activity. The oral administration of gemfibrozil for 2 weeks induces a striking heterogeneity in the lobular distribution of peroxisomes. The size and shape of peroxisomes, variety of matrix modifications, catalase content, and position within the cell, are functions of the zonal localization of the hepatocytes. The largest and most numerous peroxisomes were found in the centrilobular region indicating that these cells are most sensitive to peroxisome proliferation. On the other hand, the greatest variety of peroxisome shapes and matrix alterations (tubules and plates) was seen more peripherally in the mid-zonal and periportal regions. The larger, round centrilobular peroxisomes stained less intensely than the elongated peroxisomes found more peripherally, indicating a discrepancy between peroxisome size and catalase content. A distinct population of small irregularly shaped peroxisomes, lacking matrix specializations and containing variable catalase content, was found in the mid-zonal region. Peroxisomes in the centrilobular region were located within areas of the cell containing SER and glycogen while those in the more peripheral region were relegated to areas of the cytoplasm separate from RER and SER. In addition to modifications of peroxisomes, gemfibrozil treatment resulted in a proliferation and formation of whorled configurations of SER. This was particularly evident in the mid-zonal region, where single peroxisomal profiles could be seen surrounded by whorls of SER membranes. The results suggest that rat liver hepatocytes of the centrilobular region are the most sensitive to peroxisome proliferation and those of the periportal area are most susceptible to peroxisome matrix alterations after gemfibrozil treatment.  相似文献   

14.
H Bartels  B Vogt  K Jungermann 《FEBS letters》1987,221(2):277-283
The isolated liver of 24 h fasted rats was perfused in a non-recirculating manner in the orthograde or retrograde direction with media containing glucose and/or gluconeogenic precursors. Glycogen formation was determined biochemically and demonstrated histochemically. With glucose as the only exogenous substrate glycogen was formed exclusively in the perivenous area during both orthograde and retrograde perfusion. With gluconeogenic precursors as the exogenous substrates glycogen was deposited in the periportal zone during orthograde perfusion and in the intermediate zone during retrograde perfusion. Supply of glucose and gluconeogenic substrates initiated glycogen synthesis only in the upstream region, i.e. in the periportal zone during orthograde and in the perivenous zone during retrograde perfusion. This localization of glycogen synthesis was probably due to an unavoidable, insufficient oxygen supply of the respective downstream area. In general, the results confirm the hypothesis that periportal and perivenous glycogen was synthesized from different substrates.  相似文献   

15.
The aim of the present study was to examine the relation between hepatocyte size and ploidy in Sprague-Dawley rat liver. Therefore, subpopulations of hepatocytes of various sizes were separated from the isolated crude hepatocyte population either mechanically or by using centrifugal elutriation. Hepatocyte size was determined on scanning electron microscopy photographs. Ploidy of hepatocytes was assessed by flow cytometry. The crude hepatocyte population was very heterogeneous in sizes, with diameters ranging from 8 to 39 microm. Hepatocyte ultrastructure was well preserved as demonstrated by transmission electron microscopy. The distribution of hepatocytes within the ploidy classes was the following: 19.6+/-3.6% diploid, 56.2+/-3.2% tetraploid and 3.4+/-0.6% octoploid mononucleated cells. Thus approximately 79% of hepatocytes appeared mononucleated. The binucleated hepatocytes (21%) had two diploid nuclei (18.7+/-2.9%) or two tetraploid nuclei (2.1+/-0.6%). A similar distribution of hepatocytes into ploidy classes was obtained in subpopulations of hepatocytes of various sizes. Our findings suggest that distribution into ploidy classes is not strictly correlated with hepatocyte size. In accordance with previous observations, our results on hepatocyte ploidy from periportal or perivenous origin using digitonin perfusion, is in favour of the existence of ploidy zonation within the rat hepatic lobule.  相似文献   

16.
The action of cyanide (500 μM ), 2,4-dinitrophenol (50 μM ) and atractyloside (100 μM ) on glycogen catabolism and oxygen uptake was investigated in the bivascularly perfused liver of fed rats. Cyanide, 2,4-dinitrophenol and atractyloside were infused at identical rates into the hepatic artery in either the anterograde or retrograde perfusion. The accessible aqueous cell spaces were determined by means of the multiple-indicator dilution technique. Glucose release, oxygen uptake and glycolysis were measured as metabolic parameters. Oxygen uptake changes per unit cell space caused by atractyloside (inhibition) and 2,4-dinitrophenol (stimulation) were equal in the retrograde perfusion (periportal cells) and the anterograde perfusion (space enriched in perivenous cells); the decreases caused by cyanide were higher in the retrograde perfusion. Glucose release from periportal cells was not increased upon inhibition of oxidative phosphorylation, a phenomenon which was independent of the mechanism of action of the inhibitor. There were nearly identical changes in glycolysis in the periportal and perivenous cells. It was concluded that: (1) oxygen concentration in the perfused rat liver, if maintained above 100 μM , had little influence on the zonation of the respiratory activity; (2) in spite of the lower activities of the key enzymes of glycolysis in the periportal hepatocytes, as assayed under standard conditions, these cells were as effective as the perivenous ones in generating ATP in the cytosol when oxidative phosphorylation was impaired; (3) the key enzymes of glycogenolysis and glycolysis in periportal and perivenous cells responded differently to changes in the energy charge.  相似文献   

17.
Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway.  相似文献   

18.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The effects of ischemia in vitro for 0-60 min at 37 degrees C on glycogen phosphorylase activity in rat liver have been studied under different feeding conditions. Glycogen phosphorylase activity was demonstrated with a recently developed quantitative histochemical method using a semipermeable membrane and the PAS-reaction. The cytophotometrically measured glycogen phosphorylase activity in livers from 24 h-fasted rats was approximately five times the activity in livers from normally fed rats. The activity in periportal areas was about 1.5 times higher than the activity in pericentral areas in livers from starved rats, but more or less evenly distributed in livers from fed rats. Enzyme activity in pericentral areas of livers from 24 h-fasted rats started to decrease after 20 min of ischemia. After 50-60 min of ischemia, the activity was decreased to approximately 25% of the control activity. Livers from normally fed rats showed unchanged activity in periportal and pericentral areas after 10-60 min of ischemia. It has been assumed that the activation of the enzyme was disturbed by ischemia, possibly as a consequence of plasma membrane damage.  相似文献   

20.
Methotrexate is an antifolate that is widely used in the treatment of malignant tumours and other diseases. The present study was undertaken to examine the short-term effects of high doses of methotrexate (HD-MTX) on the ultrastructure and metabolic activity of isolated rat livers. The authenticity of the drug-induced changes was substantiated by the concomitant use of in vivo experiments. Isolated rat livers were infused with HD-MTX via the portal vein for 3 hours (total dose for each liver 2000 mg). For in vivo experiments, each rat received a single intravenous injection of a maximum tolerated dose of MTX (100 mg/kg body weight) that allowed the animals to survive for 3 days. At the end of each experimental period, MTX-treated and control livers were processed for light microscopy (LM), scanning (SEM) and transmission electron (TEM) microscopy. Oxygen consumption and thyroxine metabolism were measured in treated and control isolated livers. With the exception of a few minor differences, the structural changes in the hepatocytes after MTX treatment in vitro and vivo were similar. There were focal changes consisting of disruption of normal hepatic plates and swelling and vacuolation of the hepatocytes, with no clear evidence of restriction to a specific hepatic zone. SEM revealed striking changes in the plasma membrane, the microvillar system, intercellular junctions and the sinusoidal endothelium. TEM revealed disorganized endoplasmic reticulum, dispersion of the polyribosomes, a variety of mitochondrial changes, and glycogen redistribution. In MTX-treated isolated rat livers, the uptake of tetraiodothyronine (T4) was not affected, but triiodothyronine (T3) release was impaired. Oxygen consumption was increased in livers treated with MTX. Employing an organotypic liver perfusion model in conjunction with the in vivo experiment and the use of SEM, TEM and hepatic thyroxine measurements, this investigation revealed that infusion of HD-MTX induced early ultrastructual changes in cell membrane, intercellular junctions and cell organelles and disturbance in the functional integrity of the hepatocytes in isolated rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号