首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endogenous, heat-stable and pronase-sensitive activator for enzymatic hydrolysis of glucosylceramide was detected in the crude lysosome-mitochondria fraction of human placenta. Its properties differ distinctly in several important respects from those of the previously described glucosylceramidase activator. The activator reported here had no effect on crude glucosylceramidase with either glucosylceramide or 4-methylumbelliferyl-beta-D-glucopyranoside as the substrate in the presence of either sodium taurocholate or phosphatidylserine. On the contrary, glucosylceramide hydrolysis by the enzyme partially purified through Octyl-Sepharose 4B chromatography was stimulated by this activator 6-9-fold in the presence of either sodium taurocholate or phosphatidylserine. The Km for glucosylceramide in the presence of the activator was 1/3 of that without the activator. In the crude enzyme fraction, the activator was present in a 16-fold excess over the minimum amount necessary for full activation of the enzyme. Hydrolysis of the fluorogenic substrate by the post-Octyl-Sepharose enzyme, however, was not stimulated by the activator. Similarly, hydrolysis of galactosylceramide by galactosylceramidase obtained from the same Octyl-Sepharose chromatography was not stimulated. Our observations are consistent with the idea that glucosylceramidase is saturated by, or perhaps tightly associated with, this activator in the placenta and that they are dissociated by the Octyl-Sepharose chromatography. In fact, the properties of the combined post-Octyl-Sepharose enzyme and activator closely mimic those of the crude enzyme without added activator.  相似文献   

2.
1. Human hepatic "acid" beta-galactosidase preparations, which had been purified approximately 250-fold, were examined for activities toward 4-methylumbelliferyl beta-galactoside, galactosylceramide, lactosylceramide, galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosyl-glucosylceramide (GM1-Ganglioside) and galactosyl-Cacetylgalactosaminyl-galactosyl-glucosylceramide (asialo GM1-ganglioside). 2. The enzyme was active toward the synthetic substrate, GM1-ganglioside and asialo GM1-ganglioside but was inactive toward galactosylceramide. Under our assay conditions, optimized for lactosylceramidase II, the preparations were as active toward lactosylceramide as toward GM1-ganglioside or its asialo derivative. Teh apparent Km values for the three natural substrates were similar. When determined by the assay system of Wenger, D.A., Sattler, M., Clark, C. and McKelvey, H. (1974) Clin. Chim. Acta 56, 199-206, lactosylceramidecleaving activity was 0.2% of that determined by our assay system. This confirmed our previous suggestion that the Wenger assay system determines exclusively the activity of lactosylceramidase I, which is probably identical with galactosylceramide beta-galactosidase. 3. Crude sodium taurocholate was far more effective than pure taurocholate in stimualting hydrolysis of the three glycosphingolipids by the beta-galactosidase. However, crude tauroxycholate, suggesting that the unique activating capacity of the crude taurocholate might be due to taurodeoxycholate present as the major impurity. 4. Cl- was generally stimulatory for hydrolysis of the natural glycosphingolipids by our enzyme preparation. Effects of additional oleic acid and Triton X-100 Were generally minor in either direction. 5. When the enzyme preparation was diluted with water, activity toward the synthetic substrate declined rapidly while those toward the natural substrates were essentially stable. Activity toward the synthetic substrate remained much more stable when the enzyme was diluted with 0.1 M sodium citrate/phosphate buffer, pH 5.0. 6. These observations provide insight into the complex relationship among the human hepatic beta-galactosidases.  相似文献   

3.
A protein activator of glucosylceramidase (EC 3.2.1.45) has been previously identified by us in human placenta [(1985) Biochim. Biophys. Acta 836, 157-166]. In the present paper we report that its function in vitro is to stimulate the binding of the enzyme to its substrate, glucosylceramide. After the purification step which frees the enzyme of most of its activator protein (octyl-Sepharose 4B chromatography), the capacity of glucosylceramidase to bind to the glucosylceramide micelles is dramatically decreased. The addition of the activator protein to the purified enzyme restores this binding.  相似文献   

4.
The topology of ceramide glucosyltransferase and de novo synthesized glucosylceramide was studied in sealed and 'right-side-out' vesicles of porcine submaxillary glands derived from Golgi apparatus. Pronase treatment which did not cause any breakdown of the luminal glycoprotein galactosyltransferase activity, inhibited the ceramide glucosyltransferase to more than 50% at a ratio proteinase to Golgi protein 1:100. Trypsin at the same concentration, while producing no inactivation of luminal galactosyltransferase, caused a complete loss of ceramide glucosyltransferase activity. The membrane-impermeable compound, DIDS, which did not cause any inhibition of the galactosyltransferase, inhibited the ceramide glucosyltransferase (70% reduction at 80 microM DIDS). Thus, the enzyme ceramide glucosyltransferase is accessible from the cytoplasmic side of the Golgi vesicles. The orientation of the newly synthesized glucosylceramide is studied by the ability of the enzyme glucosylceramidase to hydrolyse this compound both on intact and on disrupted vesicles. The same percentage (respectively, 36 and 30%) of hydrolysis was obtained during an incubation of 3 h, showing that glucosylceramide is not at all protected from external hydrolysis. Pronase-treated vesicles revealed an increase in glucosylceramidase hydrolysis (up to 45%), which indicates that glucosylceramide that glucosylceramide may be cryptic. All these results indicate that the ceramide glucosyltransferase, as well as related glucosylceramide, are cytoplasmically oriented in Golgi vesicles from porcine submaxillary glands.  相似文献   

5.
Enzymatic activity of lysosomal glucosyl-ceramidase was determined in intact murine hybridoma and macrophage cells with the synthetic substrate nonylumbeliferyl-beta-glucoside (NUG). The substrate was applied as complex with bovine serum albumin (two binding sites, Kd 2.2 +/- 0.3 microM). The transport of the artificial substrate from medium to the enzyme was explored by measurements of substrate concentrations in cellular membranes and of endocytosis rate relative to substrate hydrolysis. The results indicated that, after enrichment in the plasma membrane, the substrate is mainly transported by simple diffusion. Release of nonylumberlliferone monitored fluorimetrically after disintegration of the cells in borate buffer containing Triton X-100 at pH 9.5 showed that 10(8) cells of both cell lines hydrolysed 1-1.5 nmol substrate/min at a total concentration of 0.1 mM NUG in the medium. Substrate hydrolysis was prevented by preincubating the cells with conduritol B epoxide (CBE), a specific active site-directed inhibitor of lysosomal glucosylceramidase. The substrate concentration at the site of the enzyme and maximal activity were evaluated by the inhibiting effect of the substrate on the inactivation rate by conduritol B epoxide. The rate of inhibitor uptake measured with bromo-[3H]conduritol B epoxide was shown to be not rate-limiting for the inactivation reaction. The molar concentration of the enzyme was determined by labeling with bromo-[3H]conduritol B epoxide. Comparison of the maximal intracellular activity with that of the enzyme after disintegration and activation by taurocholate showed a 20-fold lower activity in the native environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The primary catabolic pathway for glucosylceramide is catalyzed by the lysosomal enzyme glucocerebrosidase that is defective in Gaucher disease patients. A distinct non-lysosomal glucosylceramidase has been described but its identity remained enigmatic for years. We here report that the non-lysosomal glucosylceramidase is identical to the earlier described bile acid beta-glucosidase, being beta-glucosidase 2 (GBA2). Expressed GBA2 is identical to the native non-lysosomal glucosylceramidase in various enzymatic features such as substrate specificity and inhibitor sensitivity. Expression of GBA2 coincides with increased non-lysosomal glucosylceramidase activity, and GBA2-targeted RNA interference reduces endogenous non-lysosomal glucosylceramidase activity in cells. GBA2 is found to be located at or close to the cell surface, and its activity is linked to sphingomyelin generation. Hydrophobic deoxynojirimycins are extremely potent inhibitors for GBA2. In mice pharmacological inhibition of GBA2 activity is associated with impaired spermatogenesis, a phenomenon also very recently reported for GBA2 knock-out mice (Yildiz, Y., Matern, H., Thompson, B., Allegood, J. C., Warren, R. L., Ramirez, D. M., Hammer, R. E., Hamra, F. K., Matern, S., and Russell, D. W. (2006) J. Clin. Invest. 116, 2985-2994). In conclusion, GBA2 plays a role in cellular glucosylceramide metabolism.  相似文献   

7.
The behaviour of highly purified glucosylceramide beta-glucosidase (glucosylceramidase, EC 3.2.1.45) from human placenta [Furbish, F. S., Blair, H. E., Shiloach, J., Pentchev, P. G. & Brady, R. B. (1977) Proc. Natl Acad. Sci. USA 74, 3560-3563] was investigated in the absence of detergents with structurally modified glucosylceramides inserted into unilamellar liposomes. The reaction between the water-soluble enzyme and the liposomal substrates was significantly dependent on the structure of the lipophilic aglycon moiety of glycolipids: glucosyl-N-acetyl-sphingosines (D-erythro and L-threo) were better substrates than the corresponding glucosylceramides. The L-threo derivatives were poorer substrates with higher apparent Km values than the corresponding D-erythro derivatives. For glucosyl-3-keto-ceramide and glucosyl-dihydro-ceramide (D-erythro), higher Km values were found than for glucosylceramide. Sphingosine, glucosylsphingosine and glucosyl-N-acetyl-sphingosine were the most effective inhibitors of the hydrolysis of glucosylceramide. D-erythro-Ceramide and D-galactosyl-N-acetyl-D-erythro-sphingosine inhibited the hydrolysis of amphiphilic glucosylceramide but not that of water-soluble 4-methyl-umbelliferyl-beta-glucoside, suggesting a hydrophobic binding site of the enzyme for the aglycon moiety of its membrane-bound substrate. Dilution experiments suggested that at least a fraction of the enzyme associates with the liposomes and degrades the lipid substrate even in the absence of activator proteins. Acidic phospholipids incorporated into liposomes caused a powerful stimulation (30-40-fold) of the glucosylceramide beta-glucosidase, whereas acidic sphingolipids (sulphatide, gangliosides GM1 and GD1a) incorporated into liposomes stimulated this enzyme only moderately (3-10-fold).  相似文献   

8.
We have found that, under some experimental conditions, the placental glucosylceramidase shows an anomalous behaviour on gel filtration chromatography. At pH 5.6, the optimal pH of the enzymatic assay, the purified enzyme remains bound to either Superose 6 or TSK-40-XL HPLC columns, while the interaction of the crude glucosylceramidase contained in the water extract of the lysosome-mitochondrial fraction of placenta with the two HPLC gel matrices is much weaker. The quite different behaviour of the crude compared to the purified enzyme may be explained by the formation in the crude preparation of associated form(s) of glucosylceramidase with suitable endogenous compound(s), which compete with the gel matrices for the binding to the enzyme. The most likely one component of the enzyme complex is the placental activating factor, previously reported by us (Vaccaro et al. (1985) Biochim. Biophys. Acta 836, 157-166), as indicated by the negligible stimulation of the crude enzyme activity on addition of the factor, either before or after passage through the HPLC columns. On the assumption that the behaviour of crude glucosylceramidase on gel filtration becomes similar to that of the purified enzyme when its interaction with endogenous substance(s) is impaired, we have identified some conditions which prevent the formation of the enzyme associated form(s): (a) the addition of guanidine chloride (0.2 M), a cahotropic agent, to the crude preparation; and (b) the increase of pH up to 8. In conclusion, taking advantage of the anomalous behaviour of glucosylceramidase on gel filtration chromatography, evidence has been obtained that placental glucosylceramidase may occur under several forms which had not been previously reported; a difference in experimental conditions can promote the formation of one or another form, by possibly affecting the composition and/or the stoichiometry and/or the stability of the enzyme complex.  相似文献   

9.
D Fabbro  R J Desnick  S Gatt 《Enzyme》1984,31(2):122-127
Studies were undertaken to characterize the beta-glucosidase activity in freshly homogenized liver from Sprague-Dawley rats. About 95% of the total beta-glucosidase activity was associated with the particulate fraction, whereas only about 3-7% was found in the cytosol. Storage of fresh liver at room temperature for several hours or repeated freezing and thawing of fresh rat liver prior to homogenization, solubilized 20-30% of the total hepatic beta-glucosidase activity. An additional 30% could be solubilized by extracting the particulate sediments with water or Triton X-100. The enzymatic activity in both the particulate and solubilized fractions optimally hydrolyzed 4-methylumbelliferyl-beta-D-glucoside as well as the glycolipid substrate, glucosylceramide, at an acidic pH. The rates of hydrolysis of either substrate by all subcellular fractions were stimulated by addition of sodium taurocholate or phosphatidylserine. The particulate, cytosolic and solubilized enzymes bound to concanavalin A, were inhibited by conduritol B epoxide and migrated more electronegatively on cellulose acetate than the cytosolic acid beta-glucosidase from human liver or spleen. These data indicated that the liver of Sprague-Dawley rats contained primarily the lysosomal acid beta-glucosidase ('glucocerebrosidase') and little, if any, 'nonspecific' beta-glucosidase. This, and the fact that about 60% of the rat hepatic beta-glucosidase could be solubilized by autolysis, freezing and rethawing or extraction with water, contrasts with the beta-glucosidases in human liver since about 80% of the total beta-glucosidase activity is cytosolic and does not hydrolyze glucosylceramide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Electrophoresis of hydrolytic enzymes under nondenaturing conditions on acrylamide gels containing the appropriate high-molecular-weight substrates entrapped on the gel has been explored as a general method for sensitive enzyme resolution and detection. Under electrophoresis conditions of optimal enzyme activity, the enzymes may bind tightly to the fixed substrate and can only migrate in the electrophoretic field as the substrate is hydrolyzed. When the gels after electrophoresis in this “binding mode” are stained with substrate-detecting reagents, clear tracks of enzyme migration are observed, and the length of each track is a function of the amount of enzyme present in that track. Multiple forms of a given enzyme activity have not been and are not likely to be observed under these conditions. Under electrophoresis conditions of minimal (or suboptimal) enzyme activity, the enzymes do not bind to the fixed substrate and their mobility in the electrophoretic field does not appear to be significantly affected by the presence of substrate. After electrophoresis in this “nonbinding mode” the gels are incubated under conditions of optimal enzyme activity to allow substrate hydrolysis to take place before they are stained with substrate-detecting reagents, and active enzymes are detected as clear bands. Multiple forms of a given activity which were resolved during electrophoresis in the nonbinding mode are reflected by the presence of individual bands. The substrate-containing gel electrophoresis technique does not appear to be amenable to precise quantification of enzymes. By comparing the length of the clear tracks or the degree of staining of the activity bands for a range of enzyme concentrations, however, it is possible to establish the smallest amount of enzyme that can unequivocally be detected under a given set of conditions; from such studies we estimate that the sensitivity of detection with the substrate-containing gel electrophoresis technique can be orders of magnitude better than that obtained with other methods. The levels of detection observed in the work presented here were about 50 pg for α-amylase run on starch-containing gels, 1 pg to 1 ng for nucleases run on DNA- or RNA-containing gels, and 100 pg to 10 ng for 11 different pure and crude protease preparations run on gels containing heat-denatured bovine serum albumin.  相似文献   

11.
The fast enzymatic hydrolysis of D ,L -phenylalanine methylester (DLE) to L -phenylalanine (LA) and D -phenylalanine methylester (DE) with immobilized α-chymotrypsin was chosen as a model reaction. Under the experimental conditions applied in the present investigations the pore diffusion is the rate-limiting step of this reaction owing to the pH gradient in the particles. The effectiveness of the catalyst is experimentally determined as a function of the substrate concentration based on measurements of the enzyme protein content of native and immobilized enzyme. The proteolytic reaction is theoretically treated by also using a pore diffusion model which takes into account the concentration gradients of substrate and product, pH- and enzyme activity profiles, as well as the change of buffer capacity of the solute in the catalyst particles. The model parameters were experimentally determined for the investigated system. It can be shown that conditions are possible for which the effectiveness of the catalyst exceeds unity.  相似文献   

12.
(1) In lymphoid cell lines established by Epstein-Barr virus transformation of B-lymphocytes from normal subjects there exist two lipases hydrolysing triolein (the first one with acid optimum pH and the other one with alkaline optimum pH) and one cholesterol esterase (with acidic optimum pH). The acid triolein lipase (optimum pH 3.75-4.0) and the acid cholesterol esterase are activated by taurocholate (optimal concentration between 1 and 2.5 g/l) whereas alkaline triolein-lipase is inhibited by crude taurocholate. (2) Acid lipase deficiency is demonstrated in lymphoid cell lines from a Wolman's patient, using natural substrates, triolein and cholesteryl oleate (residual activity 5 and 8%, respectively). Thus, this similar deficiency demonstrates that, in lymphoid cell lines, triolein and cholesteryl esters are hydrolysed (under the conditions used here) by a single enzyme, i.e., lysosomal acid lipase muted in Wolman's disease. (3) pH profiles of synthetic substrate hydrolysis show marked differences between methylumbelliferyl oleate and methylumbelliferyl palmitate, and are greatly dependent on the assay conditions used. In the presence of optimal concentrations of taurocholate (1-2.5 g/l), nonspecific carboxylesterases are inhibited and acid lipase is activated: in this case, methylumbelliferyl oleate can be used to demonstrate the acid lipase deficiency in Wolman's lines (15-20% of residual activity). Methylumbelliferyl palmitate hydrolysis is less dependent on assay conditions and thus can be more accurately used for the diagnosis of Wolman's disease, with lower residual activity (10-15%) than using methylumbelliferyl oleate. Thus, Epstein-Barr virus-transformed lymphoid cell lines represent an accurate model system in culture for experimental studies of Wolman's disease.  相似文献   

13.
Three binding sites on highly purified lysosomal beta-glucosidase from human placenta were identified by studies of the effects of interactions of various enzyme modifiers. The negatively charged lipids, taurocholate and phosphatidylserine, were shown to be noncompetitive, nonessential activators of 4-methylumbelliferyl-beta-D-glucoside hydrolysis. Similar results were observed using the natural substrate, glucosyl ceramide, and low concentrations of taurocholate (less than 1.8 mM) or phosphatidylserine (0.5 mM). However, higher concentrations resulted in a complex partial inhibition of glucosyl ceramide hydrolysis. Increasing concentrations of phosphatidylserine obviated the effects of taurocholate, suggesting that these compounds compete for a common binding site on the enzyme. Glucosyl sphingosine and its N-hexyl derivative were potent noncompetitive inhibitors of the enzyme activity using either substrate. Taurocholate (or phosphatidylserine) and glucosyl sphingosine were shown to be mutually exclusive, indicating competition for a common binding site. In contrast, octyl- and dodecyl-beta-glucosides were linear-mixed-type inhibitors of glucosyl ceramide or 4-methylumbelliferyl-beta-D-glucoside hydrolysis, indicating at least two binding sites on the enzyme. Inhibition by these alkyl beta-glucosides was observed only in the presence of taurocholate or phosphatidylserine. The competitive component [Ki (slope)] for the two alkyl beta-glucosides decreased with increasing alkyl chain length, and was unaffected by increasing taurocholate or phosphatidylserine concentration. The noncompetitive component [Ki (intercept)] was nearly identical for both alkyl beta-glucosides and was decreased by increasing taurocholate or phosphatidylserine concentration. These results indicated that the negatively charged lipids and alkyl beta-glucosides were not mutually exclusive, but interacted with different binding sites on the enzyme. Gluconolactone was shown to protect the enzyme from inhibition by the catalytic site-directed covalent inhibitor, conduritol B indicating an interaction at a common binding site. In the presence of substrate, taurocholate facilitated the inhibition of gluconolactone or conduritol B epoxide. These studies indicated that lysosomal beta-glucosidase had at least three binding sites: (i) a catalytic site which cleaves the beta-glucosidic moiety, (ii) an aglycon site which binds the acyl or alkyl moieties of substrates and some inhibitors, and (iii) a hydrophobic site which interacts with negatively charged lipids and facilitates enzyme catalysis.  相似文献   

14.
The deficiency of oleic acid as one of the fatty acids in glucocerebrosides that accumulate (31--77 mg/g dry weight) in the spleen in patients with Gaucher's disease was confirmed in 9 cases. In an effort to account for the 10-fold difference between the oleoyl glycocerebroside content of glucocerebrosides in spleen from controls and patients with Gaucher's disease, we compared the ability of extracts of spleen and fibroblasts from individuals with various forms of Gaucher's disease and controls to hydrolyze [14C]stearoyl and [3H]oleoyl glucocerebroside. The residual glucosylceramidase activity in patients with Gaucher's disease hydrolyzes the glucose moiety of oleoyl glucocerebroside at approximately the same rate as that of stearoyl glucocerebroside. Similarly, the more active glucosylceramidase of control tissue acts upon both oleoyl and stearoyl glucocerebrosides with equal efficiency. These observations indicate that a mutation affecting the substrate specificity of glucosylceramidase cannot account for the lack of oleic acid-containing glucocerebrosides in patients with Gaucher's disease. Thus, the hypothesis that the difference in fatty acid composition found in glucocerebroside is obtained as a result of a mutation affecting the specificity of the residual glucosylceramidase must be rejected.  相似文献   

15.
Interaction of saposins, acidic lipids, and glucosylceramidase   总被引:5,自引:0,他引:5  
Activity of lysosomal glucosylceramidase is stimulated by two small glycoproteins, saposin A and C, which are, together with two other similar glycoproteins, derived from a single precursor protein. This enzyme is also stimulated by naturally occurring acidic lipids, such as phosphatidylserine and gangliosides. Using highly purified glucosylceramidase, saposins, and acidic lipids, the mechanism of enzyme stimulation was studied by investigating complex formation between the three components and by examining effects on activity caused by changing amounts of saposins and acidic lipids, individually or in combination. The results indicated that acidic lipids form a water-soluble complex with glucosylceramidase but not with saposins and that saposins and acidic lipids each bind to the enzyme at two different sites for the activation. Based on these observations, the previously proposed three-binding sites model of glucosylceramidase, activator, and substrate was modified to one composed of four binding sites: one for carbohydrate of the substrate, one for aglycon, one for acidic lipids, and one for saposins.  相似文献   

16.
Thomas WE  Glomset JA 《Biochemistry》1999,38(11):3320-3326
We used a new procedure that involved selective enzyme binding to lipid vesicles to partially purify a soluble diacylglycerol kinase, then studied the relation between enzyme-vesicle binding and activity in vesicle-based assays. The vesicle-binding procedure required about 2 h, increased the enzyme's specific activity 50-fold with a 50% yield of activity, and combined well with additional purification steps. Studies of the activity of the partially purified diacylglycerol kinase toward vesicle-associated diacylglycerols revealed linear reaction kinetics that reflected enzyme binding to the vesicles; factors known to influence enzyme binding to the vesicles affected enzyme activity only indirectly, not by influencing the diacylglycerol kinase reaction itself. On the other hand, special incubation experiments that caused both substrate depletion in vesicles and enzyme stalling provided evidence that the diacylglycerol kinase could desorb from these vesicles, adsorb to freshly added, substrate-containing vesicles, and resume catalysis of phosphorylation reactions. The molecular basis for this enzyme-vesicle "hopping" behavior remains to be clarified. But enzyme-catalyzed conversion of diacylglycerol to phosphatidic acid may not have been a contributing factor because separate, enzyme-vesicle binding experiments showed that the enzyme had only a marginally higher affinity for diacylglycerol-containing vesicles than it did for vesicles that contained comparable amounts of phosphatidic acid. The combined results of our experiments suggest that the linear rates of diacylglycerol phosphorylation observed in standard assays with diacylglycerol-containing vesicles may have been combined functions of both the rate of enzyme hopping among vesicles and the rate of diacylglycerol phosphorylation by enzyme that was bound transiently on substrate-containing vesicles.  相似文献   

17.
Radiolabeled cholesteryl oleate, when incorporated into phospholipid vesicles, was hydrolyzed at acid pH by an enzyme present in rabbit aortic homogenates. In contrast, cholesteryl oleate presented as an acetone dispersion was not effectively hydrolyzed at acid pH under identical conditions. Using the vesicle preparation as substrate, a sensitive assay system for the acid hydrolase was developed in which hydrolysis was proportional to protein concentration and incubation time, and was independent of substrate concentration. The physical state of the vesicles was apparently not altered by the assay conditions, and no hydrolysis of the vesicle-associated phospholipid was detected. Acid cholesterol esterase activity in atherosclerotic aortic tissue was 2.5-fold greater than that of control tissue, and even greater increases were observed in the activities of other lysosomal enzymes (N-acetyl-beta-d-glucosaminidase and beta-glucuronidase). Glucose-6-phosphatase activity was also increased in aortas from cholesterol-fed animals while 5' nucleotidase activity remained unchanged. Labeled triolein also was incorporated into phospholipid vesicles and was hydrolyzed by an acid lipase in aortic tissue. Similarities between triolein and cholesteryl oleate hydrolysis existed with respect to pH optimum and the effect of cholesterol feeding on activity, suggesting that a single enzyme may hydrolyze both lipids.  相似文献   

18.
Beef kidney 3-hydroxyanthranilic acid oxygenase has been purified to homogeneity. It is a single subunit protein of Mr = 34,000 +/- 2,000 with a frictional coefficient (f/f0) of about 1.1. The enzyme readily aggregates to form, apparently inactive, higher molecular weight oligomers. The very rapid loss of enzyme activity during the assay was analyzed extensively. It was found to be due to inactivation of the enzyme by the substrate, 3-hydroxyanthranilate, and unrelated to enzyme turnover or oxidation of bound iron. The loss of activity was shown to be a first order decay process, and methods are given for obtaining accurate initial reaction rates under all conditions. Evidence was presented that the enzyme assumes a catalytically inactive conformation at pH 3.4, which only relatively slowly rearranges to an active form at pH 6.5; the rearrangement can be blocked by the presence of substrate. We have found that Fe2+, which is required for enzymatic activity, can equilibrate freely, albeit slowly, with the enzyme during the course of the enzyme reaction even in the presence of saturating 3-hydroxanthranilate. Under assay conditons, the Fe2+ has an apparent dissociation constant of 0.04 mM. The kinetic properties of the enzyme were found to be dramatically different in beta,beta-dimethylglutarate buffer and collidine buffer; both the rate of loss of activity during the assay and the substrate Km and Vmax were affected.  相似文献   

19.
Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid. We postulate that similar mechanisms may be important in the regulation of LPL activity at the vascular endothelium.  相似文献   

20.
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号