首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitution in vitro. The experimental results showed that lamin was involved in the nuclear assembly in vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear lamina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

2.
利用电镜观察紫竹梅雄蕊行超薄切片,发现细胞器,如线粒体有向核凹入现象,其线粒体仍处在与细胞质相勾通的核沟槽里,但核沟槽能扩大核被膜表面积,以利用于胞核与胞质的物质交换和信息传递,当核沟槽颈部变窄时,核膜融合,核沟槽脱离核被膜,形成核液泡;随后,核液泡的内外两层膜相继降解,核液泡被消化溶入核基质中。  相似文献   

3.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

4.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitutionin vitro. The experimental results showed that lamin was involved in the nuclear assemblyin vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear Iknina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly. Project supported by the National Natural Science Foundation of China.  相似文献   

5.
Dramatic changes in cell and nuclear size occur during development and differentiation, and aberrant nuclear size is associated with many disease states. However, the mechanisms that regulate nuclear size are largely unknown. A robust system for investigating nuclear size is early Xenopus laevis development, during which reductions in nuclear size occur without changes in DNA content. To identify cellular factors that regulate nuclear size during development, we developed a novel nuclear resizing assay wherein nuclei assembled in Xenopus egg extract become smaller in the presence of cytoplasmic interphase extract isolated from post-gastrula Xenopus embryos. We show that nuclear shrinkage depends on conventional protein kinase C (cPKC). Increased nuclear cPKC localization and activity and decreased nuclear association of lamins mediate nuclear size reductions during development, and manipulating cPKC activity in vivo during interphase alters nuclear size in the embryo. We propose a model of steady-state nuclear size regulation whereby nuclear expansion is balanced by an active cPKC-dependent mechanism that reduces nuclear size.  相似文献   

6.
N J Severs 《Cytobios》1977,18(69):50-67
Changes in the nuclear envelope transport capacity, as measured by the number of nuclear pore complexes/unit nuclear volume/cell, were followed during the Saccharomyces cerevisiae cell cycle using data obtained by freeze-fracture electron microscopy. Pore number per unit nuclear volume decreased sharply in early G0, remained steady from mid-GO through S to G2, and showed a further slight decrease at M and G1. These periods of decline apparently resulted from nuclear enlargement without sufficient formation of new nuclear pore complexes to maintain the pore number to nuclear volume ratio. However, marked nuclear pore formation did accompany both increases in nuclear volume. The significance of these changes in relation to other events in the cell cycle is discussed. The validity of using nuclear pore number/unit nuclear volume and other pore number data as indices of nuclear envelope transport capacity and cell activity is critically examined.  相似文献   

7.
A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP gamma S, and the Ca++ chelator, BAPTA. These reagents have allowed us to determine that the assembly of a nuclear pore requires the prior assembly of a double nuclear membrane. Inhibition of nuclear vesicle fusion by pretreatment of the membrane vesicle fraction with NEM blocks pore complex assembly. In contrast, NEM treatment of already fused double nuclear membranes does not block pore assembly. This indicates that NEM inhibits a single step in pore assembly--the initial fusion of vesicles required to form a double nuclear membrane. The presence of GTP gamma S blocks pore assembly at two distinct steps, first by preventing fusion between nuclear vesicles, and second by blocking a step in pore assembly that occurs on already fused double nuclear membranes. Interestingly, when the Ca2+ chelator BAPTA is added to a nuclear assembly reaction, it only transiently blocks nuclear vesicle fusion, but completely blocks nuclear pore assembly. This results in the formation of a nucleus surrounded by a double nuclear membrane, but devoid of nuclear pores. To order the positions at which GTP gamma S and BAPTA interfere with pore assembly, a novel anchored nuclear assembly assay was developed. This assay revealed that the BAPTA-sensitive step in pore assembly occurs after the second GTP gamma S-sensitive step. Thus, through use of an in vitro nuclear reconstitution system, it has been possible to biochemically define and order multiple steps in nuclear pore assembly.  相似文献   

8.
The nuclear envelope is a complex structure consisting of nuclear membranes, nuclear pore complexes and lamina. Several integral membrane proteins specific to the nuclear pore membrane and the inner nuclear membrane are known. Pore membrane proteins are probably important for organization and assembly of the nuclear pore complex, while proteins of the inner nuclear membrane are likely to play major roles in the structure and dynamics of the nuclear lamina and chromatin. Biochemical studies are now identifying potential binding partners for some of these integral membrane proteins, and analysis of nuclear envelope assembly at the end of mitosis is providing important insights into their functions.  相似文献   

9.
The central features of nuclear import have been conserved during evolution. In yeast the nuclear accumulation of proteins follows the same selective and active transport mechanisms known from higher eukaryotes. Yeast nuclear proteins contain nuclear localization sequences (NLS) which are presumably recognized by receptors in the cytoplasm and the nuclear envelope. Subsequent to this recognition step, nuclear proteins are translocated into the nucleus via the nuclear pore complexes. The structure of the yeast nuclear pore complex resembles that of higher eukaryotes. Recently, the first putative components of the yeast nuclear import machinery have been cloned and sequenced. The genetically amenable yeast system allows for an efficient structural and functional analysis of these components. Due to the evolutionary conservation potential insights into the nuclear import mechanisms in yeast can be transferred to higher eukaryotes. Thus, yeast can be considered as a eukaryotic model system to study nuclear transport.  相似文献   

10.
Each nuclear pore is responsible for both nuclear import and export with a finite capacity for bidirectional transport across the nuclear envelope. It remains poorly understood how the nuclear transport pathway responds to increased demands for nucleocytoplasmic communication. A case in point is cellular hypertrophy in which increased amounts of genetic material need to be transported from the nucleus to the cytosol. Here, we report an adaptive down-regulation of nuclear import supporting such an increased demand for nuclear export. The induction of cardiac cell hypertrophy by phenylephrine or angiotensin II inhibited the nuclear translocation of H1 histones. The removal of hypertrophic stimuli reversed the hypertrophic phenotype and restored nuclear import. Moreover, the inhibition of nuclear export by leptomycin B rescued import. Hypertrophic reprogramming increased the intracellular GTP/GDP ratio and promoted the nuclear redistribution of the GTP-binding transport factor Ran, favoring export over import. Further, in hypertrophy, the reduced creatine kinase and adenylate kinase activities limited energy delivery to the nuclear pore. The reduction of activities was associated with the closure of the cytoplasmic phase of the nuclear pore preventing import at the translocation step. Thus, to overcome the limited capacity for nucleocytoplasmic transport, cells requiring increased nuclear export regulate the nuclear transport pathway by undergoing a metabolic and structural restriction of nuclear import.  相似文献   

11.
Cytoplasmic dynein as a facilitator of nuclear envelope breakdown.   总被引:11,自引:0,他引:11  
During prophase in higher cells, centrosomes localize to deep invaginations in the nuclear envelope in a microtubule-dependent process. Loss of nuclear membranes in prometaphase commences in regions of the nuclear envelope that lie outside of these invaginations. Dynein and dynactin complex components concentrate on the nuclear envelope prior to any changes in nuclear envelope organization. These observations suggest a model in which dynein facilitates nuclear envelope breakdown by pulling nuclear membranes and associated proteins poleward along astral microtubules leading to nuclear membrane detachment. Support for this model is provided by the finding that interference with dynein function drastically alters nuclear membrane dynamics in prophase and prometaphase.  相似文献   

12.
During germinal vesicle breakdown (GVBD) in starfish, the nuclear envelope disassembles before the nuclear lamina completely depolymerizes, judging from correlative ultrastructural, immunolabeling, and light microscopic analyses. At 13 degrees C, prophase-arrested oocytes of Pisaster ochraceus begin GVBD and rapidly undergo nuclear envelope disassembly about 50 min after addition of the maturation-inducing hormone 1-methyladenine (1-MA). The nuclear lamina of these oocytes, however, remains present for 10-20 min following the vesiculation of the nuclear envelope. Completion of GVBD, as evidenced by a blending of the nuclear contents with the surrounding cytoplasm, occurs within about 15 min after the nuclear lamina has fully depolymerized. Immunofluorescence studies also indicate that a marked increase in the phosphorylations of nuclear proteins precedes the structural reorganizations of the nuclear envelope and nuclear lamina during GVBD.  相似文献   

13.
14.
During apoptosis (also called programmed cell death), the chromatin condenses and the DNA is cleaved into oligonucleosomal fragments. Caspases are believed to play a major role in nuclear apoptosis. However, the relation between dismantling of nuclear pores, disruption of the nucleocytoplasmic barrier, and nuclear entry of caspases is unclear. We have analyzed nuclear import of the green fluorescent protein fused to a nuclear localization signal (GFP-NLS) in tissue culture cells undergoing apoptosis. Decreased nuclear accumulation of GFP-NLS could be detected at the onset of nuclear apoptosis manifested as dramatic condensation and redistribution of chromatin toward the nuclear periphery. At this step, dismantling of nuclear pores was already evident as indicated by proteolysis of the nuclear pore membrane protein POM121. Thus, disruption of nuclear compartmentalization correlated with early signs of nuclear pore damage. Both these events clearly preceded massive DNA fragmentation, detected by TUNEL assay. Furthermore, we show that in apoptotic cells, POM121 is specifically cleaved at aspartate-531 in its large C-terminal portion by a caspase-3-dependent mechanism. Cleavage of the C-terminal portion of POM121, which is adjoining the nuclear pore complex, is likely to disrupt interactions with other nuclear pore proteins affecting the stability of the pore complex. A temporal correlation of apoptotic events supports a model where caspase-dependent disassembly of nuclear pores and disruption of the nucleocytoplasmic barrier paves the way for nuclear entry of caspases and subsequent activation of CAD-mediated DNA fragmentation.  相似文献   

15.
细胞核是真核细胞中最大的细胞器.高等动物细胞核主要由双层核膜、核孔复合体、核纤层、染色质和核仁等组成.在细胞有丝分裂期,细胞核呈现去装配和再装配等动态变化.在细胞分裂间期,核膜、核孔复合体和核纤层构成细胞核的外周结构,为遗传物质在染色质和核仁中的代谢提供了一个相对稳定的环境,同时调控细胞核内外的物质转运,在细胞增殖、分化、个体发育和细胞衰老等许多方面发挥着重要作用.本文主要对高等动物细胞核膜和核纤层结构、功能及动态变化调控机制等方面的研究进展进行简要综述.  相似文献   

16.
The nuclear envelope is the hallmark of all eukaryotic cells, separating the nucleoplasm from the cytoplasm. At the same time, the nuclear envelope allows for the controlled exchange of macromolecules between the two compartments through nuclear pores and presents a surface for anchoring and organizing cytoskeletal components and chromatin. Although our molecular understanding of the nuclear envelope in higher plants is only just beginning, fundamental differences from the animal nuclear envelope have already been found. This review provides an updated investigation of these differences with respect to nuclear pore complexes, targeting of Ran signalling to the nuclear envelope, inner nuclear envelope proteins, and the role and fate of the nuclear envelope during mitosis.  相似文献   

17.
18.
Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.  相似文献   

19.
During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup107-160 complexes are in single units instead of assembled prepores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes.  相似文献   

20.
The nuclear envelope has traditionally been thought of as a barrier that separates the nucleoplasm from the cytoplasm in eukaryotic cells. Increasing evidence shows that the nuclear envelope also links the inside of the nucleus to the cytoskeleton. Here we discuss recent papers showing that this link occurs through complexes of lamins on the inner aspect of the inner nuclear membrane, transmembrane proteins of the inner nuclear membrane called SUNs and large nesprin isoforms localized specifically to the outer nuclear membrane. These discoveries have implications for nuclear positioning, nuclear migration and pathogenesis of inherited diseases that are caused by mutations in nuclear envelope proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号