首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between high molecular weight chitosans (fraction of acetylated units (F(A)) = 0.10 or 0.50) and lignosulfonates of varying molecular weights (5000-400000 g/mol) and degrees of sulfonation (0.39-0.64) were studied. Lignosulfonates and chitosans form primarily insoluble polyelectrolyte complexes when mixed at pH 4.5, where the polymers are oppositely charged. In contrast, no complex formation occurred at pH 8, as shown by using a chitosan with F(A) = 0.50, which is soluble at this pH. Thus, a positively charged chitosan is a prerequisite for interactions leading to insoluble complexes with lignosulfonates. It is therefore unlikely that complex formation involves the formation of covalent sulfonylamide linkages as proposed in the literature. The composition of the complexes varied to some degree with the mixing ratio and molecular weight of lignosulfonate, but in most cases compact complexes with a sulfonate/amino ratio close to 1.0 were formed, suggesting that all sulfonate groups are accessible for interactions with chitosan. The influence of the ionic strength and temperature on the complex formation and the behavior of the precipitated complexes were in agreement with that expected for classical polyelectrolyte complexes where the associative phase separation is primarily governed by the increase in entropy due to the release of counterions.  相似文献   

2.
The nonstoichiometric polyelectrolyte complex (PEC) formed by poly(methacrylic acid) (degree of polymerization 1830) (PMAA)and poly(N-ethyl-4-vinyl-pyridinium bromide) (degree of polymerization 530) (PEVP) undergoes reversible precipitation from aqueous solution at any desired pH-value in the range 4.5–6.5 depending on the ionic strength and PEVP/PMAA ratio in the complex. The antigen, inactivated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rabbit was covalently coupled to PEVP. The resulting GAPDH–PEVP/PMAA complex was used for the purification of antibodies from a 6G7 clone specific towards inactivated GAPDH. The crude extract was incubated with GAPDH-containing PEC and the precipitation of the PEC was carried out at 0.01 M NaCl and pH 4.5, 5.3, 6.0 and 6.5 using PEC with PEVP/PMAA ratios of 0.45, 0.3, 0.2 and 0.15, respectively. Purified antibodies were eluted at pH 4.0 where PECs of all compositions used were insoluble.PEC precipitation is accompanied only by small nonspecific coprecipitation of proteins. Precipitated PEC could be dissolved at pH 7.3 and used repeatedly. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
《Process Biochemistry》2010,45(10):1753-1756
The insoluble complex formation between alpha-amylase and the strong anionic polyelectrolyte polyacrylic acid was studied by using turbidimetric and enzymatic activity. The highest molecular weight polyacrylic acid (100,000 Da and 240,000 Da) proved to be suitable precipitating agents. They were insoluble at pH lower than 4–5, with a stoichiometric ratio polymer mol per protein mol of 1:52 and 1:154, respectively. Electrostatic interactions are not the only factor in the formation of insoluble complexes. High percentage of alpha-amylase enzymatic activity maintains throughout time, even in the presence of polyelectrolyte.The application of precipitation conditions found when applying a bovine homogenate showed that it is not suitable for purification even if it proved to be useful methodology for the concentration of the enzyme and can be used as a first step of purification.  相似文献   

4.
We evaluated the potential for polyelectrolyte induced precipitation of antibodies to replace traditional chromatography purification. We investigated the impact of solution pH, solution ionic strength and polyelectrolyte molecular weight on the degree of precipitation using the anionic polyelectrolytes polyvinylsulfonic acid (PVS), polyacrylic acid (PAA), and polystyrenesulfonic acid (PSS). As we approached the pI of the antibody, charge neutralization of the antibody reduced the antibody–polyelectrolyte interaction, reducing antibody precipitation. At a given pH, increasing solution ionic strength prevented the ionic interaction between the polyelectrolyte and the antibody, reducing antibody precipitation. With increasing pH of precipitation, there was an increase in impurity clearance. Increasing polyelectrolyte molecular weight allowed the precipitation to be performed under conditions of higher ionic strength. PVS was selected as the preferred polyelectrolyte based on step yield following resolubilization, purification performance, as well as the nature of the precipitate. We evaluated PVS precipitation as a replacement for the initial capture step, as well as an intermediate polishing step in the purification of a humanized monoclonal antibody. PVS precipitation separated the antibody from host cell impurities such as host cell proteins (HCP) and DNA, process impurities such as leached protein A, insulin and gentamicin, as well as antibody fragments and aggregates. PVS was subsequently removed from antibody pools to <1 µg/mg using anion exchange chromatography. PVS precipitation did not impact the biological activity of the resolubilized antibody. Biotechnol. Bioeng. 2009;102: 1141–1151. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Intermolecular complexes of genomic polydisperse DNA with synthetic polycations have been studied. Two cationic polymers have been used, a homopolymer poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its analogue grafted with poly(oxyethylene). The amount of poly(oxyethylene) grafts in the copolymer was 15 mol % and Mw of the graft was 200 g/mol. Salmon DNA (sodium salt) was used. The average molecular weight (Mw) of DNA was 10.4 x 10(6) g/mol. Conductivity, pH, and dynamic light scattering studies were used to characterize the complexes. The size and shape of the polyelectrolyte complex particles have been studied as a function of the cation-to-anion ratio in aqueous solutions of varying ionic strengths. The polyelectrolyte complexes have extremely narrow size distributions taking into account the polydispersity of the polyelectrolytes studied. The poly(oxyethylene) grafts on PMOTAC promote the formation of small colloidally stabile complex particles. Addition of salt shifts the macroscopic phase separation toward lower polycation content; that is, complexes partly phase separate with the mixing ratios far from 1:1. Further addition of salt to the turbid, partly phase separated solution results in the dissociation of complexes and the polycation and DNA dissolve as individual chains.  相似文献   

6.
The enzymatic and conformational stability of Bacillus subtilis alpha-amylase and its polymeric complexes in acid media and subsequent renaturation in weakly alkaline media were investigated. The following parameters of alpha-amylase secondary structure were determined from circular dichroism spectra: helical units -25%, beta-structures -9%; beta-turns -13%; disordered conformations -53%. After complexation with polymethacrylic acid (PMAA) the alpha-amylase secondary structure did not change, and the tertiary structure underwent only small local changes. Complexation of alpha-amylase with linear and cross-linked PMAA led to an increase in both enzymatic and conformational stabilities in acid media. Purification of alpha-amylase using a biosorbent resulted in higher acid resistance of the free enzyme and of that in the complex with PMAA. Moreover, the degree of reversibility of the acid inactivation also increased.  相似文献   

7.
Guo W  Hu N 《Biophysical chemistry》2007,129(2-3):163-171
Myoglobin (Mb), with net positive surface charges at pH 5.0, was successfully assembled into layer-by-layer films on various solid surfaces with poly(methacrylic acid) (PMAA) at different pH, designated as {PMAA(pH 5.0)/Mb}n, {PMAA(pH 6.5)/Mb}n, and {PMAA(pH 8.0)/Mb}n, respectively. As a weak polycarboxylic acid with pKa=6 - 7, PMAA carried different negative charges at different pH due to different ionization degree of its carboxylic acid groups. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the assembly of {PMAA/Mb}n films. All the results showed that the adsorption amount of Mb in each bilayer had an "unexpected" sequence of {PMAA(pH 5.0)/Mb}n>{PMAA(pH 6.5)/Mb}n>{PMAA(pH 8.0)/Mb}n, which could be explained by the formation of soluble complex of PMAA-Mb at pH 8.0 and the cooperative effect of hydrogen bonding and induced electrostatic interaction between Mb and PMAA at pH 5.0. The influence of ionic strength in exposure solution and in Mb adsorbate solution was investigated, and the results supported the above explanations. The {PMAA/Mb}n films provided a suitable microenvironment for Mb to retain its near-native structure and transfer electron with underlying electrodes. The reversible CV peak pair for Mb Fe(III)/Fe(II) redox couple could be used to catalyze reduction of hydrogen peroxide electrochemically, showing the potential applicability of the films as the new type of biosensors or bioreactors based on the direct electrochemistry of Mb. The electrochemical and electrocatalytic behaviors of protein layer-by-layer films with weak polyelectrolytes could thus be controlled by adjusting the solution pH of weak polyelectrolytes.  相似文献   

8.
Green fluorescent protein (GFP) antisense oligodeoxynucleotide (ODN) was covalently conjugated to hyaluronic acid (HA) via a reducible disulfide linkage, and the HA-ODN conjugate was complexed with protamine to increase the extent of cellular uptake and enhance the gene inhibition efficiency of GFP expression. The HA-ODN conjugate formed more stable polyelectrolyte complexes with protamine as compared to naked ODN, probably because of its increased charge density. The higher cellular uptake of protamine/HA-ODN complexes than that of protamine/naked ODN complexes was attributed to the formation of more compact nanosized complexes (approximately 200 nm in diameter) in aqueous solution. Protamine/HA-ODN complexes also showed a comparable level of GFP gene inhibition to that of cytotoxic polyethylenimine (PEI)/ODN complexes. Since both HA and protamine are naturally occurring biocompatible materials, the current formulation based on a cleavable conjugation strategy of ODN to HA could be potentially applied as safe and effective nonviral carriers for ODN and siRNA nucleic acid therapeutics.  相似文献   

9.
The interactions of fibrinogen wth acidic polysaccharides have been studied in connection with anticoagulant properties of heparin. Despite the high charge density of heparin, a polyelectrolyte complex of fibrinogen and heparin could not be detected at any mixing ratio by the measurement of turbidity, metachromasis with acridine orange, circular dichroism, and viscosity of their mixture solutions. Sodium cellulose sulphate and dextran sulphate, however, which have similar charge densities, formed precipitates of polyelectrolyte complexes with fibrinogen. This difference was presumed to be due to the secondary structure characteristics of heparin in solution as well as the relatively low molecular weight of heparin.  相似文献   

10.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

11.
张海花  李司  童富淡 《生物工程学报》2011,27(11):1549-1554
聚合高分子电解质含有大量阳离子或阴离子,通过静电作用结合带相反电荷的蛋白质,生成聚合高分子电解质-蛋白质复合物,电解质-蛋白质复合物通过桥连作用或疏水作用形成沉淀颗粒;聚合高分子电解质的选择性沉淀作用受电解质的分子量、添加剂量、溶液离子强度和pH的影响。用高分子电解质从大规模的低浓度溶液中选择性地沉淀目的蛋白质,为生物工程的下游处理开辟了一条新途径。  相似文献   

12.
The complexation between hen egg white lysozyme (HEWL) and a novel pH-sensitive and intrinsically hydrophobic polyelectrolyte poly(sodium(sulfamate-carboxylate)isoprene) (SCPI), was investigated by means of dynamic, static, and electrophoretic light scattering and isothermal titration calorimetry measurements. The complexation process was studied at both pH 7 and 3 (high and low charge density of the SCPI, respectively) and under low ionic strength conditions for two polyelectrolyte samples of different molecular weights. The solution behavior, structure, and effective charge of the formed complexes proved to be dependent on the pH, the [-]/[+] charge ratio, and the molecular weight of the polyelectrolyte. Increasing the ionic strength of the solution led to vast aggregation and eventually precipitation of the complexes. The interaction between HEWL and SCPI was found to be mainly electrostatic, associated with an exothermic enthalpy change. The structural investigation of the complexed protein by fluorescence, infrared, circular dichroism spectroscopic, and differential scanning calorimetric measurements revealed no signs of denaturation upon complexation.  相似文献   

13.
Hydrodynamic and molecular characteristics of particles of polyelectrolyte complexes (PEC) between sodium dextransulfate and chitosan hydrochloride were studied by various physicochemical methods (high-rate sedimentation, viscosimetry, turbidimetry, and diffusion). As was shown, the complex formation is accompanied by increase in the average sizes with simultaneous changes in the shape of the particles of the investigated PEC. According to the proposed polycomplexes model, side by side aggregation of the taken macromolecules could cause disordering of adjacent helical parts of polyanion-matrix that facilitates the formation of sphere-like polycomplexes particles.  相似文献   

14.
Polyelectrolyte complexes (PECs) of chitosan (CH) with kappa/beta carrageenan (κ/β-K), a polysaccharide of red algae, were obtained in a soluble form and as films. Using porcine intestinal mucosa as a model, it was shown that single-layer films obtained from polysaccharides and a three-layer film containing their polyelectrolyte complex exhibited mucoadhesive properties. The mucoadhesive ability of the films depended on the polysaccharide type and changed after PEC formation. Comparative analysis of the ζ-potential values determined for the soluble form of polyelectrolyte complexes in an aqueous solution and in a mucin-containing solution confirmed the mucoadhesive properties of the PECs. It was found that the complexes retained their mucoadhesive properties upon the inclusion of echinochrome A in their soluble form. This made it possible to consider them noninvasive forms of drug delivery.  相似文献   

15.
Intravenous inoculation of mice with vaccinia virus produced characteristic lesions of the tail surface which were suppressed by intraperitoneal administration of interferon and polyacrylic acid (PAA). Polymethacrylic acid (PMAA) stimulated the formation of vaccinia virus lesions. For full activity, both interferon and PAA must be given prior to infection. PAA was still significantly effective at small dose levels (3 mg/kg) and achieved protection for at least 4 weeks. Protection increased with increasing molecular weight of the polymer. The mode of action of PAA is discussed.  相似文献   

16.
Suspensions of insoluble polyelectrolyte complexes of dextran sulfate (DS) of different molecular masses with lactoferrin (LF) have been fabricated and characterized. The encapsulation efficiency of LF and DS in a complex at pH 3.0 and 4.0 was assessed, and particles were characterized by their sizes and ζ-potential. The complexes formed at pH 3.0 differed by a higher stability level. The interaction with DS resulted in a twofold decrease in the antioxidant activity of LF, although the formation of complexes was not accompanied by conformational changes in LF molecules according to IR-spectrometry data. Microencapsulation was carried out by treating the suspensions with negatively charged LF-DS complexes with protamine and chitosane solutions with different molecular masses. The composition, size, and the ζ-potential of interaction products were assessed which allowed us to select the conditions for the preparation of pH-sensitive polyelectrolyte microparticles loaded with LF which would be able to gradually release glycoprotein under conditions that model the passage through the gastrointestinal tract of humans. These data indicate that this approach is promising for the creation of pH-sensitive biopolyelectrolytes suitable for oral administration of LF to target cells.  相似文献   

17.
Polmethacrylic acid (PMAA) induces up to a three-fold increase in the lymphocyte population of peripheral blood in rats, goats and calves after intravenous administration. Other routes of administration are less effective. A maximum lymphocytosis is achieved after 3 hr with all doses in excess of 30 mg PMAA/kg body weight; over the next few hours the lymphocyte level declines to normal. Granulocytes increase steadily for the first 7 hr before declining. Multiple doses of PMAA 2 hr apart failed to maintain or significantly alter the lymphocytosis. PMAA was labelled with 125I and 14C, and was traced to various sites in the rat. The greatest accumulation of radioactivity was in the spleen, lungs, liver, kidney, adrenals and mesenteric lymph nodes (with 14C-PMAA). The accumulation appeared more specific for spleen and lymph nodes since there was only a small loss of activity following removal of blood by whole body perfusion. This supports previous findings indicating that these two tissues play a major role in the development of lymphocytosis. Accumulation in the bone marrow may be indicative of stem cell mobilization. The results are discussed in terms of the lymphocytosis-inducing mechanism and the site of action of PMAA and the possible clinical application to ECIB therapy is considered.  相似文献   

18.
More than twenty different polymers, mostly polyanions, were tested in rats for their ability to mobilize lymphocytes into the peripheral blood within 2–3 h. The various polyanions differed in basic structure, in side-chain (size and type), in molecular weight and configuration and in amount and type of anionic charge along the molecule. Neutral polymers and a polycation were also tested for comparison. Some of the polyanions were found to be very effective, others less so and some completely ineffective. Some were also toxic. The basic polymer to which the others were compared was polymethacrylic acid (PMAA), an already recognized mobilizing agent. The best agents were the heparinoids, sulphated polyanions, and the best of these, causing a 3–4-fold increase, were dextran sulphate and polyvinyl sulphuric acid (PVSA). Heparin, although the strongest anticoagulant, was the weakest mobilizer. Some factors that appear capable of modifying mobilization to varying degrees were molecular weight, size and configuration, sulphate content and mode of administration. In the case of PVSA, the smaller molecular weight substance gave a more prolonged lymphocytosis in blood. The high molecular weight substance gave a peak after 2 h, slightly earlier than with PMAA (2–3 h). The administration of protamine chloride to the rat (i.v.) caused an immediate reversal of mobilization, following a course to control values which was essentially identical to the normal decline, only earlier.Dextran sulphate of low molecular weight seems to be the polyanion of choice in subsequent mobilization experiments dealing with determination of the specific mononuclear cell type being mobilized. The single factor that all mobilizing polyanions have in common is a negative molecular charge. It is not yet known exactly how this charge induces the mobilization of mononuclear cells, nor what causes the variability in effectiveness among polyanions.  相似文献   

19.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) containing 4-nitrophenyl ester (ONp) or thiazolidine-2-thione (TT) reactive groups in side chains and telechelic/semitelechelic pHPMA with TT groups were designed as highly hydrophilic biocompatible polymers suitable for chemical coating of polyelectrolyte-based DNA-containing nanoparticles bearing amino groups on the surface. The course of the coating reaction carried out in aqueous solution was evaluated on model self-assembling polyelectrolyte DNA/poly(L-lysine) (DNA/PLL) complexes either by monitoring the amount of residual polymer reactive groups by UV spectroscopy or by monitoring changes in the weight-average molecular weight and hydrodynamic size of the complexes using light scattering methods. Physicochemical stability of the coated complexes in buffered saline solution was also investigated. Contrary to uncoated particles, the coated complexes showed remarkable stability to aggregate in 0.15 M NaCl. Coating with pHPMA had practically no effect on the size distribution of the most stable complexes prepared by complexation of DNA with high-molecular-weight PLL (M(w) = 134 000) as shown by dynamic light scattering. The coating reaction was faster and more efficient with multivalent HPMA copolymers containing TT reactive groups than that with HPMA copolymers containing ONp groups.  相似文献   

20.
Comparison of the stability of five plant peroxidases (horseradish, royal palm tree leaf, soybean, and cationic and anionic peanut peroxidases) was carried out under acidic conditions favorable for synthesis of polyelectrolyte complexes of polyaniline (PANI). It demonstrates that palm tree peroxidase has the highest stability. Using this peroxidase as a catalyst, the enzymatic synthesis of polyelectrolyte complexes of PANI and poly(2-acrylamido-3-methyl-1-propanesulfonic acid) (PAMPS) was developed. The template polymerization of aniline was carried out in aqueous buffer at pH 2.8. Varying the concentrations of aniline, PAMPS, and hydrogen peroxide as reagents, favorable conditions for production of PANI were determined. UV-vis-NIR absorption and EPR demonstrated that PAMPS and PANI formed the electroactive complex similar to PANI doped traditionally using low molecular weight sulfonic acids. The effect of pH on conformational variability of the complex was evaluated by UV-vis spectroscopy. Atomic force microscopy showed that a size of the particles of the PANI-PAMPS complexes varied between 10 and 25 nm, depending on a concentration of PAMPS in the complex. The dc conductivity of the complexes depends also on the content of PAMPS, the higher conductivity being for the complexes containing the lower content of the polymeric template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号