首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate (glyoxylate) aminotransferase from rat liver peroxisomes was highly purified and characterized. The enzyme preparation has a mol.wt. of approx. 80,000 with two identical subunits, and isoelectric point of 8.0 and a pH optimum between 8.0 and 8.5. The enzyme catalysed transamination between a number of L-amino acids and pyruvate or glyoxylate. The effective amino acceptors were pyruvate, phenylpyruvate and glyoxylate with serine, and glyoxylate and phenylpyruvate with alanine as amino donor. These properties and kinetic parameters of the enzyme are remarkably similar to those previously described for mitochondrial alanine-glyoxylate aminotransferase isoenzyme 1 from glucagon-injected rat liver [Noguchi, Okuno, Takada, Minatogawa, Okai & Kido (1978, Biochem. J. 169, 113-122].  相似文献   

2.
The hepatic peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-enzyme whose deficiency is responsible for Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive disorder. In the last few years the knowledge of the characteristics of AGT and the transfer of this information into some pathogenic variants have significantly contributed to the improvement of the understanding at the molecular level of the PH1 pathogenesis. In this review, the spectroscopic features, the coenzyme's binding affinity, the steady-state kinetic parameters as well as the sensitivity to thermal and chemical stress of the two allelic forms of AGT, the major (AGT-Ma) and the minor (AGT-Mi) allele, have been described. Moreover, we summarize the characterization obtained by means of biochemical and bioinformatic analyses of the following PH1-causing variants in the recombinant purified forms: G82E associated with the major allele, F152I encoded on the background of the minor allele, and the G41 mutants which co-segregate either with the major allele (G41R-Ma and G41V-Ma) or with the minor allele (G41R-Mi). The data have been correlated with previous clinical and cell biology results, which allow us to (i) highlight the functional differences between AGT-Ma and AGT-Mi, (ii) identify the structural and functional molecular defects of the pathogenic variants, (iii) improve the correlation between the genotype and the enzymatic phenotype, (iv) foresee or understand the molecular basis of the responsiveness to pyridoxine treatment of patients bearing these mutations, and (v) pave the way for new treatment strategies. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.  相似文献   

3.
Immunological distances of alanine: glyoxylate aminotransferase 1 (serine:pyruvate aminotransferase) in mitochondria or peroxisomes from eight different mammalian liver were determined with rabbit anti-serum against the mitochondrial enzyme of rat liver by microcomplement fixation. Results suggest that heterotopic alanine:glyoxylate aminotransferase 1 are orthologous proteins and their subcellular localization and substrate specificity changed during rapid molecular evolution.  相似文献   

4.
Photorespiration reduces carbon fixation rate, but it is an essential process in plant. Photorespiration involves reactions in chloroplasts, peroxisomes, and mitochondria. In photorepiratory peroxisome, alanine glyoxylate aminotransferase (AGT) catalyzes the conversion of alanine and glyoxylate into glycine and pyruvate, respectively. We isolated a low temperature-inducible cDNA encoding AGT from mungbean leaves. The full-length cDNA, designated asMLT92, contains an open reading frame of 1,203 nucleotides coding for a protein of 401 amino acids. Genomic DNA blotting showed that the mungbean genome has one copy ofMLT92. MLT92 mRNA was induced by low temperature and its RNA expression was not much increased by drought stress. ABA and NaCl did not induce RNA expression ofMLT92. Based on GFP/RFP targeting experiment, GFP-MLT92 fusion protein and SKL-RFP, a peroxisome marker, were colocalized to peroxisome in tobacco protoplasts. This suggests that peroxisomalMLT92 is involved in molecular response to low temperature stress.  相似文献   

5.
In addition to the main transaminase reaction, the pyridoxal 5'-phosphate-dependent enzyme human liver peroxisomal alanine:glyoxylate aminotransferase (AGT) is able to catalyze the alpha,beta-elimination of beta-chloro-l-alanine with a catalytic efficiency similar to that of the physiological transaminase reaction with l-alanine. On the other hand, during the reaction of AGT with l-cysteine, changes in the coenzyme forms and analysis of the products reveal the occurrence of both beta-elimination and half-transamination of l-cysteine together with the pyruvate transamination. A mechanism in which a ketimine species is the common intermediate of half-transamination and beta-elimination of l-cysteine is proposed. l-cysteine partitions between these two reactions with a ratio of ~2.5. Rapid scanning stopped-flow and quench flow experiments permit the identification of reaction intermediates and the measurements of the kinetic parameters of l-cysteine half-transamination. The k(cat) of this reaction is 200- or 60-fold lower than that of l-alanine and l-serine, respectively. Conversely, l-cysteine binds to AGT with a binding affinity 30- and 200-fold higher than that of l-alanine and l-serine, respectively. This appears to be consistent with the calculated interaction energies of the l-cysteine, l-alanine and l-serine docked at the active site of AGT.  相似文献   

6.
7.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase.  相似文献   

8.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo form in the peroxisomes and as the holo form in the mitochondria in chicken kidney. In contrast, the enzyme was found to be present as the holo form both in the peroxisomes and in the mitochondria in pigeon kidney, suggesting that birds are classified into two groups on the basis of intraperoxisomal form of kidney alanine:glyoxylate aminotransferase. In the kidney, the pigeon peroxisomal holo enzyme did not cross-react immunologically with the chicken peroxisomal apo enzyme.  相似文献   

9.
A novel alanine:glyoxylate aminotransferase was found in a hyperthermophilic archaeon, Thermococcus litoralis. The amino acid sequence of the enzyme did not show a similarity to any alanine:glyoxylate aminotransferases reported so far. Homologues of the enzyme appear to be present in almost all hyperthermophilic archaea whose whole genomes have been sequenced.  相似文献   

10.
Dimethylarginine:pyruvate aminotransferase, which plays a role in the metabolism of dimethylarginines, has been purified to homogeneity from rat kidney. The enzyme has a molecular weight of approximately 200,000 and an isoelectric point at about pH 6.3. The enzyme consists of four similar subunits having a molecular weight of about 50,000. The enzyme catalyzes the effective transaminations of guanidino-N methylated L-arginines (e.g. NG,NG-dimethyl-L-arginine, NG,N'G-dimethyl-L-arginine and NG-monomethyl-L-arginine) and the alpha-amino group of L-ornithine to pyruvate or glyoxylate. The enzyme was always accompanied by the known alanine:glyoxylate amino-transferase activity with the ratios of their specific activities remaining constant during the purification steps. The physicochemical and immunological properties of the purified enzyme were shown to be identical with those of the isozyme of alanine:glyoxylate aminotransferase (EC 2.6.1.44), designated as alanine:glyoxylate aminotransferase 2 (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The distribution profiles in tissues and the negative response to glucagon treatment further supported the identity of the two enzymes. The present data show that alanine:glyoxilate aminotransferase 2 functions in dimethylarginine metabolism in vivo in rats.  相似文献   

11.
Alanine:glyoxylate aminotransferase (AGT) is a pyridoxal-phosphate (PLP)-dependent enzyme. Its deficiency causes the hereditary kidney stone disease primary hyperoxaluria type 1. AGT is a highly stable compact dimer and the first 21 residues of each subunit form an extension which wraps over the surface of the neighboring subunit. Naturally occurring and artificial amino acid replacements in this extension create changes in the functional properties of AGT in mammalian cells, including relocation of the enzyme from peroxisomes to mitochondria. In order to elucidate the structural and functional role of this N-terminal extension, we have analyzed the consequences of its removal using a variety of biochemical and cell biological methods. When expressed in Escherichia coli, the N-terminal deleted form of AGT showed the presence of the protein but in an insoluble form resulting in only a 10% soluble yield as compared to the full-length version. The purified soluble fraction showed reduced affinity for PLP and greatly reduced catalytic activity. Although maintaining a dimer form, it was highly prone to self-aggregation. When expressed in a mammalian cell line, the truncated construct was normally targeted to peroxisomes, where it formed large stable but catalytically inactive aggregates. These results suggest that the N-terminal extension plays an essential role in allowing AGT to attain its correct conformation and functional activity. The precise mechanism of this effect is still under investigation.  相似文献   

12.
Three alanine aminotransferases, two minor (AlaAT-1, AlaAT-3) and one major (AlaAT-2), were detected by native gel electrophoresis of leaf extracts from Panicum miliaceum L. AlaAT-2 was purified to homogeneity and a specific polyclonal antibody was raised against it which did not react with the other two forms of the enzyme. The enzyme, with an apparent molecular size of 102 kDa, appeared to be a dimer of a single 50-kDa polypeptide. The enzyme has a relatively broad pH optima with similar curves for the forward and reverse directions, ranging between 6.5 and 7.5. The Km values of this enzyme were 6.67, 0.15, 5.00, and 0.33 mM for alanine, 2-oxoglutarate, glutamate, and pyruvate, respectively. The activity of AlaAT-2 was found to increase markedly during leaf greening in parallel with the increase of immunochemically titrated protein, and it is suggested to function in the C4 photosynthetic cycle.  相似文献   

13.
We measured hepatic alanine:glyoxylate aminotransferase (AGT) activity using capillary electrophoresis. After rat liver homogenate was incubated in the presence of substrates and pyridoxal 5'-phosphate, the pyruvate and glycine produced by AGT were measured. The AGT activity was 10.02+/-0.31 micro mol pyruvate/h/mg protein and 10.21+/-0.15 micro mol glycine/h/mg protein. This method is relatively simple and shows superior sensitivity, allowing the measurement of enzyme activity in 5 micro g of protein. Therefore, it appears to be suitable for laboratory use and may also have advantages for measuring AGT activity in liver biopsy specimens.  相似文献   

14.
15.
Two different aminotransferases, that have glyoxylate as the amino acceptor, have specific activities of 1 to 2 mumol . min-1 . mg of protein-1 in the isolated peroxisomal fraction from spinach leaves. Their properties were evaluated after separation on a hydroxylapatite column. Both enzymes had a Km for glyoxylate of 0.15 mM and an amino acid Km of 2 to 3 mM. Reactions proceeded by a Ping Pong Bi Bi mechanism. Serine:glyoxylate aminotransferase was relatively specific for both substrates and could only be slightly reversed with 100 mM glycine, although the Ki of glycine was 33 mM. The glutamate:glyoxylate amino-transferase protein was equally active in catalyzing an alanine:glyoxylate aminotransferase reaction, but the reverse reactions with 100 mM glycine were hardly measureable, although the Ki (glycine) was 8.7 mM. Protection against hydroxylamine inhibition from reaction with pyridoxal phosphate was used to investigate the specificity of amino acid binding. Substrate amino acids protected at about the same concentration as their Km, while glycine protected at its Ki concentration. Thus, the nearly irreversible catalysis with glycine is not due to a failure to bind glycine. The significance of a peroxisomal alanine:glyoxylate aminotransferase activity has not been incorporated into schemes for the oxidative photosynthetic carbon cycle.  相似文献   

16.
17.
Good AG  Muench DG 《Plant physiology》1992,99(4):1520-1525
Alanine aminotransferase (AlaAT, EC 2.6.1.2) is an enzyme that is induced under anaerobic conditions in cereal roots. In barley (Hordeum vulgare L.) roots, there are a number of isoforms of AlaAT. We have identified the anaerobically induced isoform and have purified it to homogeneity. The isolation procedure involved a two-step ammonium sulfate precipitation, gel filtration, ion-exchange chromatography, and chromatofocusing. The enzyme was purified approximately 350-fold to a specific activity of 2231 units/milligram protein. The apparent molecular masses of the native and sodium dodecyl sulfate-denatured AlaAT proteins are 97 and 50 kilodaltons, respectively, indicating that the native enzyme is probably a homodimer. AlaAT has a number of interesting characteristics when compared with other plant aminotransferases. AlaAT does not require the presence of pyridoxyl-5-phosphate to retain its activity, and it appears to be very specific in the reactions that it will catalyze.  相似文献   

18.
19.
Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.  相似文献   

20.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号