首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological Engineering》2007,29(2):117-124
Desertification around oases is the major obstacle for sustainable development of oases in arid regions of northwest China. An effective way of maintaining the stability of oases is to recover the relatively stable ecological zone between an oasis and desert from the destroyed ecological rift zone. This paper presents a typical case of successful efforts in ecological restoration and desertified land reclamation of oasis–desert ecotone. On the basis of stabilization of mobile dunes and agricultural use of reclaimed land, some successful techniques including established straw checkerboards and planting drought-tolerant indigenous shrubs, leveling sand dunes and drawing water for irrigation, closing dunes for grass reservation were carried out in 1975. In the restoration area, a stable artificial protective forest system had been developed. Pedological analyses indicate that the fine particle fraction (silt and clay content) in 0–10 cm soil surface layer has been increased from 2.6% on the untreated mobile sandy land to 9.3–37.3% in the restoration areas, and correspondingly, soil organic C has been increased from 0.63 to 1.88–9.70 g kg−1 during the 28 years of restoration period. In these 28 years, a 10 cm depth of minero-organic topsoil in the irrigated Picea sylvestris forestland has been developed. It is also observed that sand transportation rate during sandstorm events has been significantly reduced. The increase of vegetation cover indicates a remarkable environmental improvement. Overall, the ecological restoration approach in this study is of practical significance for the rebuilding of rift zone ecosystem and maintenance of the stability of oasis in the arid regions of northwest China.  相似文献   

2.
《农业工程》2014,34(1):53-65
Soil water resource, together with the surface and sub-surface water resource, is essential to the regional water balance and world water cycle. A total of 90 soil samples were collected from 30 different soil profiles of dry fields throughout Chongqing, China randomly to show how soil could be a crucial part of water resources by discussing their five types of calculated soil water reservoir capacities, namely the total soil water reservoir capacity (mm) (TC), soil water storage capacity (mm) (SC), unavailable soil water reservoir capacity (mm) (UC), available soil water reservoir capacity (mm) (AC), and soil dead water storage capacity (mm) (DC) in certain layer, respectively. Overall, the total soil water reservoir capacity in 0–40 cm was about 209 mm, of which 70 mm belonged to available soil water reservoir capacity. Not all the five types of soil water reservoir capacities had significant correlations between each other. Soil structure, especially the size and quantity of soil pore was mainly determined by soil particle composition (clay, silt, and sand content). The more sand and less clay led to the more soil macropores, which provided room for soil water. Thus, clay, silt, and sand content jointly produced profound influence on soil water reservoir capacities. Nevertheless, specific water capacity and topographic factors displayed weak correlations to soil water reservoir capacities, which required further research works. Ultimately, the better regression models were achieved by multiple regression analysis coupled with “merged groups PCA” than by multiple regression analysis with “all variables PCA”. UC, SC, TC and DC could be well simulated (mostly R2 > 0.70; P < 0.05) through normal multiple regression analysis using original variables as well as multiple regression analysis with “merged groups PCA”. Only regression models of TC and DC were highly significant (mostly R2 > 0.70; P < 0.05) through “all variables PCA” method. And there were poor coefficients of determination (R2) for AC (mostly R2 < 0.40; P < 0.05) by all the three regression methods.  相似文献   

3.
Four treatment peatlands were studied in Northern Finland in order to determine peat P, Al and Fe concentration distributions and to find removal parameters for nutrient modelling. The sites had been under loading for 10–16 years. About 20 peat samples for analyses of oxalate-extractable and total P, Al and Fe were collected from the depth 0–10 cm in each peatland. The peat P concentration ranged from 0.097 mg g?1 to 14 mg g?1 being 1.7 mg g?1on average. P accumulated in preferential flow path areas. Although P concentrations were locally high, DSSP (the index of potential soil P release from peat to water) was very low in all studied peatlands, indicating that peat was not saturated by phosphorus. The results indicate that Al-based precipitation chemicals increase substantially P retention capacity of peatland and maintain a stabile P reduction in spite of varying P loads. The results also show long-term phosphorus accumulation in peatlands polishing municipal wastewater from activated sludge treatment. The regression analyses showed that k-value for N removal depends on N loading and hydraulic loading. The first-order area model together with regression analysis of the rate constant result in a good agreement between observed and calculated nitrogen concentration. The NH4-N loading to the peatland should be below 0.10 mg m2 d?1 in order to achieve a high reduction of 70%.  相似文献   

4.
Desert soils harbor fungi that have survived under highly stressed conditions of high temperature and little available moisture. This study was designed to survey the communities of cultivable fungi in the desert soils of the Arabian Peninsula and to screen the fungi for the potentially valuable antioxidants (flavonoids, phenols, saponins, steroids, tannins, terpenoids, and alkaloids) and enzymes (cellulase, laccase, lipase, protease, amylase, and chitinase). Desert soil was sampled at 30 localities representing different areas of Saudi Arabia and studied for physico-chemical soil properties. Five types of soil texture (sand, loamy sand, sandy loam, silty loam, and sandy clay loam) were observed. A total of 25 saprotrophic species was identified molecularly from 68 isolates. Our survey revealed 13 culturable fungal species that have not been reported previously from Arabian desert soils and six more species not reported from Saudi Arabian desert soils. The most commonly recorded genera were Aspergillus (isolated from 20 localities) and Penicillium (6 localities). The measurements of biochemicals revealed that antioxidants were produced by 49 and enzymes by 52 isolates; only six isolates did not produce any biochemicals. The highest biochemical activity was observed for the isolates Fusarium brachygibbosum and A. phoenicis. Other active isolates were A. proliferans and P. chrysogenum. The same species, for instance, A. niger had isolates of both high and low biochemical activities. Principal component analysis gave a tentative indication of a relationship between the biochemical activity of fungi isolated from soil and soil texture variables namely the content of silt, clay and sand. However, any generalizable relation between soil properties and fungal biochemical activities cannot be suggested. Each fungal isolate is probable to produce several antioxidants and enzymes, as shown by the correlation within the compound groups. Desert soil warrants further research as a promising source of biochemicals.  相似文献   

5.
The aim of the present study was to analyse the soil properties in different seasons at varying altitudes. The study was carried out in Dhanaulti forest, falls under temperate region of Garhwal Himalaya in Uttarakhand State, India. Physical properties and chemical properties of the soil were estimated using all standard procedures. In the present study, sand particles were reported highest (77.21%) in rainy season followed by in summer (70.17%) and winter (63.15%) seasons. The silt and clay particles also followed similar trend as sand which reduced in order of rainy > summer > winter seasons. The water holding capacity of soil ranged from 62.13 to 67.70%. The majority of soils were dark brown to dark yellowish brown in colour, which is considered having higher potential of water holding capacity. The values of nitrogen ranged between 0.01 to 0.012% (upper altitude), 0.009 to 0.011% (middle altitude) and 0.007 to 0.011% (lower altitude). The effects of altitudes and seasons in nitrogen show significant variation. Potassium ranged between 102.29 and 206.22 kg ha? 1. The combined effect of season and soil-depth also showed significant variation in level of potassium. The soil organic carbon values were between 0.14 and 0.19% and pH values ranged between 6.33 and 6.75 which was slightly acidic in nature.  相似文献   

6.
Excess P in surface waters in Quebec is the primary cause of water quality deterioration and the majority of it is coming from agricultural land as non-point source pollution. The objective of this study was to compare how two substrates, a sandy clay loam and a sand soil, influenced P retention in a surface-flow constructed wetland (CW). A secondary objective was to determine if the hydraulic residence time of the wetland differed between soil types. Measurements were taken at a pilot-scale CW site between July 5 and October 1, 2007. Three cylindrical tank replicates filled with sandy clay loam soil, and three with a sandy soil were planted with cattails (Typha latifolia L.) and reed canary grass (Phalaris arundinaceae L.). The tanks were flooded continuously with an artificial agricultural runoff solution containing 0.3 mg L?1 dissolved reactive P. The six treatment tanks retained 0.9–1.6 g P m?2, which corresponded to an average removal efficiency of 41%; there was no significant difference in the P retention by the two soil types. A bromide tracer test revealed a mean hydraulic retention time of 2.2 days for all tanks; however, the active volume of the sand tanks was greater. This investigation suggests that a sandy soil may be less prone to reducing conditions in a surface-flow CW and therefore maintain its role as a P sink for longer than the sandy clay loam.  相似文献   

7.
This study represents an efficient preliminary protocol for in vitro mass production of two Paulownia species (Paulownia hybrid and Paulownia tomentosa) seedlings by using seed explant. Different concentrations of benzyladenine (BA) or Kinetin (Kin) (0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mg/L) were tested during multiplication stage. The number of shoots/explants was significantly increased with increasing either BA or Kin concentration; however, the shoot length significantly decreased. Data show that media fortified by BA (10 mg/L) combined with indole butyric acid (IBA) at 1.0 or 1.5 mg/L recorded the highest number of shoots/explant (9.13 and 9.25, respectively). After six weeks during the multiplication stage, data cleared that media fortified by benzyladenine (10 mg/L) combined with IBA at 0.5 mg/L recorded the highest shoot length (3.23 cm). The inclusion of indole butyric acid (IBA) or naphthalene acetic acid (NAA) at 1.0–1.5 mg/L to the medium significantly increased the number of roots/plantlets and the highest root length. The results indicated that IBA supplementation was more effective than NAA for in vitro rooting of both Paulownia species. The best treatment for multiplication was 10 mg/L and 8.0–10 mg/L BA for P. hybrid and P. tomentosa, respectively. Peat moss and sand (1:1, v/v) or peat moss and sand (1:2, v/v) were investigated as soil mixture during the adaptation stage. The results referred that Paulownia species plantlets were successfully survived (100 %) in soil mixture contained peat moss: sand (1:2, v/v). This mixture recorded the highest values of plantlet height and number of leaves/plantlets.  相似文献   

8.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

9.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Characterization of soil properties is a key step in understanding the source of spatial variability in the productivity across agricultural fields. A study on a 16 ha field located in the eastern region of Saudi Arabia was undertaken to investigate the spatial variability of selected soil properties, such as soil compaction ‘SC’, electrical conductivity ‘EC’, pH (acidity or alkalinity of soil) and soil texture and its impact on the productivity of Rhodes grass (Chloris gayana L.). The productivity of Rhodes grass was investigated using the Cumulative Normalized Difference Vegetation Index (CNDVI), which was determined from Landsat-8 (OLI) images. The statistical analysis showed high spatial variability across the experimental field based on SC, clay and silt; indicated by values of the coefficient of variation (CV) of 22.08%, 21.89% and 21.02%, respectively. However, low to very low variability was observed for soil EC, sand and pH; with CV values of 13.94%, 7.20% and 0.53%, respectively. Results of the CNDVI of two successive harvests showed a relatively similar trend of Rhodes grass productivity across the experimental area (r = 0.74, p = 0.0001). Soil physicochemical layers of a considerable spatial variability (SC, clay, silt and EC) were utilized to delineate the experimental field into three management zones (MZ-1, MZ-2 and MZ-3); which covered 30.23%, 33.85% and 35.92% of the total area, respectively. The results of CNDVI indicated that the MZ-1 was the most productive zone, as its major areas of 50.28% and 45.09% were occupied by the highest CNDVI classes of 0.97–1.08 and 4.26–4.72, for the first and second harvests, respectively.  相似文献   

11.
Golf courses have been shown to have a positive impact on local biodiversity, quality of life and the economy. However, the impacts of golf courses on local environment, including ecosystem services and dis-services are not clearly understood. To explore this relationship, we took two golf courses in Beijing (a links course and a parkland course) to develop an assessment framework and present estimates of economic values of net ecosystem services, in aspects of ecosystem goods, carbon fixation, soil retention, flood storage, recreation, water consumption and nonpoint-source pollution. The results showed that the two golf courses have provided remarkable net ecosystem services values (links 51.58 × 104 yuan/ha/yr, parkland 42.60 × 104 yuan/ha/yr, 6.19 yuan = 1 US$ in 2013). Over 95% of this value is generated by three services: recreation, ecosystem goods and flood storage. Our results indicate that the parkland course has better performance in sustainable supply of ecosystem services than the links course. In addition, this study provides useful improvements for golf course design and management concerning positive environmental externalities optimizing, including the scaling of non-playing areas to maximize golf course ecosystem services supply capacity, appropriate grass species selecting and irrigation with recycled water. Moreover, a policy analysis suggests that the development of public golf course in China is a necessary complement to resolve the mismatch between private and public benefits and let more people enjoy the ecosystem services.  相似文献   

12.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

13.
Main objective of this study was to determine the interspecific relationships between two dominant species in terms of root distribution in a typical arid tree-herbage (Elaeagnus angustifolia–Achnatherum splendens) community at Xidatan, Pingluo County, Ningxia Autonomous Region, Northwest China. Eight concentric zones (namely, Z1–Z8) were set from the bases of E. angustifolia individuals to the open lands and five soil profiles were excavated in each zone. Each soil profile was divided into five layers at the depths of 0–10 cm, 10–30 cm, 30–60 cm, 60–100 cm and 100–150 cm. Roots were collected for each species, and soil water content (SWC) and soil bulk density (SBD) were measured for each layer. We found noteworthy roots layer separation in the sub-canopy zones (Z1–Z4). The soil layers with highest fine root biomass density (FRBD) of A. splendens was primarily in the 0–10 cm, which were significantly shallower than those of E. angustifolia; whereas in the inter-canopy zones (Z5–Z8), inconsistent separation, or even overlapping of highest-FRBD-layers emerged between the two dominant species. Correlation analyses showed that negative correlations of FRBD between the two species mainly occurred in those soil layers with relatively higher FRBD and lower SWC. In contrast, positive correlations corresponded with relatively lower FRBD and higher SWC.  相似文献   

14.
《Aquatic Botany》2007,86(2):107-116
The partitioning of latent heat flux (QE) to vascular plant and moss surface components was assessed for a Sphagnum-dominated bog with a hummock–hollow surface having a sparse canopy of low shrubs. Results from porometry and eddy covariance measurements of QE showed evaporation from the moss surface ranged from greater than 50% of total QE early in the growing season to less than 20% after a dry period toward the end of the growing season. Both soil moisture and vapour pressure deficit (Da) affected this partitioning with drier moss and peat, lower water table, and smaller Da all reducing moss QE. Daily maximum moss QE ranged from greater than 200 W m−2 early in the growing season to less than 100 W m−2 during a dry period. In contrast, vascular contribution to total QE increased over the season from a daily maximum of about 150 W m−2 to 250 W m−2 due to increase in leaf area by leaf replacement and emergence and to drying of the moss surface. Porometry results showed average daily maximum conductance from bog shrubs was near 8 mm s−1. These conductance values were smaller than those reported for vascular plants from more nutrient-rich wetlands. The effect of increases in Da on vascular QE were moderated by decreases in stomatal conductance. At constant available energy, vascular leaf conductance was reduced by as much as 2 mm s−1 and moss surface conductance was enhanced by up to 3 mm s−1 by large Da. Considering vascular and non-vascular water transport characteristics and frequency of water table position and given the observed variations of QE partitioning with water table location and moss and peat water content, it is suggested that modelling efforts focus on how dry hummocks and wet hollows each contribute to QE, especially as related to Da and soil moisture dynamics.  相似文献   

15.
A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N6-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.  相似文献   

16.
Zhu Y J  Jia Z Q 《农业工程》2011,31(6):341-346
Haloxylon ammodendron is one of the main shrubs that were used in desertification control project in China. Large area (2700 km2) of H. ammodendron plantation, especially more than 10 years plantation, has degraded outside Minqin oasis, northwest China. It is hard for H. ammodendron plantation to utilize ground water deeper than 20 m and to use precipitation with only mean annual 116.2 mm and uneven distribution in growing season. Thus, soil water might be the main water source of H. ammodendron plantation. Moreover, following H. ammodendron grows up, more soil water will be needed. In this study, it is hypothesized that H. ammodendron plantation would utilize deeper soil water as its age increased. Water use characteristics of different ages of H. ammodendron plantation (2 years, 5 years, 10 years, 20 years and 30 years) were examined by stable oxygen isotope technology outside Minqin oasis in July 2009. The δ18O values of water in H. ammodendron xylem, six different depths of soil (20 cm, 30 cm, 50 cm, 100 cm, 150 cm and 200 cm), rain and ground water (replaced by well water) were compared to determine major water source of H. ammodendron plantation. Meanwhile, the density, height, length and width of individuals were measured, and soil water contents were examined at the six depths in these plantation. The results showed that in 5 years H. ammodendron plantation, soil water content in 50 cm was significantly lower than moving sand dune and other ages, and soil water content in 100–200 cm was lower than moving sand dune and 2 years H. ammodendron plantation. The main depth that H. ammodendron used soil water increased as the age increased; 2 years H. ammodendron mainly used 50–200 cm soil water; 5 years H. ammodendron used 100–200 cm soil water and started to use ground water; 10 years H. ammodendron used 150–200 cm soil water and ground water, plant density of H. ammodendron declined and soil water content recovered gradually; 20 years and 30 years H. ammodendron mainly used ground water. Therefore, excessive consumption to soil water of high plant density might be one of the reasons for the degradation of H. ammodendron plantation. The critical age of H. ammodendron plantation is 5 years outside Minqin oasis because it consumed excessive soil water. If the density of 5 years H. ammodendron plantation was not decreased by selective cutting at present, it would degrade as the stand age increased later. It is suggested that initial density of new H. ammodendron plantation outside Minqin oasis must be reduced to slow down its consumption of soil water in future, and then the stability of H. ammodendron plantation could be sustained for a longer time.  相似文献   

17.
《农业工程》2014,34(1):66-71
Burned and unburned mineral soils (0–10 cm) from a 40-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at different temperatures (25 °C and 35 °C) and humidity [25%, 50%, and 75% of water holding capacity (WHC)] conditions. Carbon (C) mineralization of all soils was determined using CO2 respiration method. The results showed that CO2 evolution rates of the burned and control soils exhibited similar temporal patterns, and similar responses to temperature and moisture. CO2 evolution rates for all soil samples decreased with incubation time. At different humidity conditions, average rate of C mineralization and cumulative mineralized C from burned and control soils were significantly higher at 35 °C than at 25 °C. This implied that C mineralization was less sensitive to soil moisture than to temperature. In both soils at 25 °C or 35 °C, the amount of soil evolved CO2 over the 90 days incubation increased with increasing moisture content from 25% to 75% WHC. A temperature coefficient (Q10) varied with soil moisture contents. The maximum values recorded for Q10 were 1.7 in control soil and 1.6 in burned soil both at 25% WHC. However, there were no significant differences in Q10 values between the control and burned soils over all moisture ranges (P > 0.05). The data of cumulative C–CO2 released from control and burned soils were fitted to two different kinetic models. The two simultaneous reactions model described mineralization better than the first-order exponential model, which reflected the heterogeneity of substrate quality. Based on these results, it is possible to conclude that temperature and moisture are important in the controls of C mineralization, and the combined effects of these variables need to be considered to understand and predict the response of CO2 release in subtropical ecosystems to climate change.  相似文献   

18.
This study investigates the potential of using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to estimate root zone soil moisture at native in-situ measured sites, and at distant sites under the same climatic setting. We obtained in-situ data from Soil Climate Analysis Network (SCAN) sites near the Texas-New Mexico border area, and NDVI and EVI products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Terra satellite. Results show that soil moisture values of the same depth are highly correlated (r = 0.53 to 0.85) among sites as far as 150 km apart, and that NDVI and EVI are highly correlated at the same site (r = 0.87 to 0.91). Correlation based on raw time series of NDVI and soil moisture is in general higher than that based on deseasonalized time series at every depth. The correlation reaches maximum value when vegetation index (VI) lags soil moisture by 5 to 10 days. NDVI shows a slightly higher correlation with soil moisture than EVI does by using the deseasonalized time series of NDVI and soil moisture. It is found that deseasonalized time series of NDVI and soil moisture are correlated at native sites (r = 0.33 to 0.77), but not at sites where soil moisture is very low. Regression analysis was conducted using deseasonalized time series soil moisture and deseasonalized time series NDVI with a 5-day time lag. Regression models developed at one site and applied to a similar distant site can estimate soil moistures, accounting for 50–88% of the variation in observed soil moistures.  相似文献   

19.
Peat molecular chemistry reflects a combination of plant input and decomposition. Both vegetation community and the degree of decomposition of plant remains are highly dependent on depth and fluctuation of the water table and thus peat organic matter (OM) chemistry reflects past hydrological conditions. Changes in hydrology according to the OM composition (by pyrolysis-gas chromatography/mass spectrometry, pyrolysis-GC/MS) in a high-resolution sampled monolith of an 8000 years old peat deposit are presented. Analysis of 18 modern vegetation species resulted in molecular markers for Erica spp., Deschampsia flexuosa, Juncus bulbosus and Carex binervis, in addition to more general markers which enabled differentiation between woody, grass and moss vegetation. Factor analysis of 106 pyrolysis products quantified for all peat samples enabled identification of mineral (Factor 1) and hydrological (Factor 2) conditions of the bog. Depth profiles of vegetation markers showed good agreement with those of the scores of both factors and enabled the identification of 14 relatively wet periods, dating to 1430–1865 AD, 930–1045 AD, 640 AD, 270–385 AD, 190–215 AD, 135 AD, 45 BC–15 AD, 260–140 BC, 640–440 BC, 1055–960 BC, 1505–1260 BC, 2300 BC, 4190–2945 BC and 5700–5205 BC, which show excellent agreement with other palaeoclimatic studies in Europe. The results emphasize the importance of high-resolution sampling, in combination with the use of multiple vegetation markers and other peat OM characteristics for a proper interpretation of a peat record.  相似文献   

20.
The estimation of soil moisture by using the backscattering coefficient of radar in a mountainous region is a challenging task due to the complex topography, which impacts the distribution of soil moisture and changes the backscattering coefficient. Complicated terrain can disturb empirical moisture estimation models, thereby, the resulting estimates of soil moisture are very unlikely reliable. This article proposed an innovative way of integration of the topographic wetness index (TWI) and the backscattering coefficient of soil obtained from the TerraSAR-X image, which improves the accuracy of measurement of the soil moisture. The standard estimation error and the coefficient of determination from the model were used to evaluate the performance of TWI. Our results show that the standard estimation error was decreased from: (1) 4.0% to 3.3% cm3 cm−3 at a depth of 5 cm and (2) 4.5% to 3.9% cm3 cm−3 at a depth of 10 cm. The most reliable estimation was observed at a depth of 5 cm, when it was compared with those of 0–5 cm, 10 cm and 15 cm. The TWI from the digital elevation model (DEM) is useful as a constraint condition for modeling work. This article concludes that the integration of the backscattering coefficient of soil with TWI can significantly reduce the uncertainty in the estimation of soil moisture in a mountainous region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号