首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫唾液成分在昆虫与植物关系中的作用   总被引:13,自引:4,他引:9  
近年来,人们对于植食性昆虫唾液的深入研究,揭示出其在昆虫与植物的相互关系和协同进化中起到非常重要的作用。植食性昆虫唾液中含有的酶类和各种有机成分,能诱导植物的一系列生化反应,而且这些反应有很强的特异性,与为害的昆虫种类甚至龄期有关。鳞翅目幼虫口腔分泌物(或反吐液)中含有的β-葡糖苷酶、葡萄糖氧化酶等酶类和挥发物诱导素等有机成分,已经证明可以诱导植物的反应; 刺吸式昆虫的取食也可以刺激植物产生反应,但其唾液内的酶类,如烟粉虱的碱性磷酸酶, 蚜虫的酚氧化酶、果胶酶和多聚半乳糖醛酸酶, 蝽类的寡聚半乳糖醛酸酶等是否发挥作用,目前还没有直接的证据。寄主植物对昆虫的唾液成分也有很大的影响,可能是昆虫对不同植物营养成分和毒性成分的适应方式。对昆虫唾液蛋白的分析表明,具有同样类型口器、食物类型接近的昆虫,唾液成分有更多的相似性。研究植食性昆虫的唾液成分,对于阐明昆虫和植物的协同进化关系、昆虫生物型的形成机理、害虫的致害机理,以及指导害虫防治等,有着一定的理论和实际意义。  相似文献   

2.
唾液成分在刺吸式昆虫与植物关系中的作用   总被引:2,自引:0,他引:2  
严盈  刘万学  万方浩 《昆虫学报》2008,51(5):537-544
近年来,人们对刺吸式昆虫唾液成分的研究,揭示出其在刺吸式昆虫与植物关系中的重要作用。对多数刺吸式昆虫而言,他们取食时会分泌胶状和水状两种唾液,其中胶状唾液会在取食早期分泌形成唾液鞘来围绕并保护口针,通过直接和间接的作用来帮助取食;而水状唾液中则包含了果胶酶、纤维素酶、多酚氧化酶、过氧化物酶、碱性磷酸酯酶、蔗糖酶等组分,来帮助刺吸式昆虫对植物穿刺、消化食物、解毒次生物质并破坏植物的防御反应。有趣的是,唾液成分同时还可以诱导植物的防御反应,包括诱导植物的伤信号引起直接防御反应和诱导植物产生挥发物吸引植食者的天敌引起间接防御反应。并且,许多刺吸式昆虫取 食能够特异性地引发植物的病理反应,有研究推测刺吸式昆虫唾液中多聚半乳糖醛酸酶、碱性磷酸酯酶、蔗糖酶、多酚氧化酶等成分可能是某些植物特定病理反应的激发子,但是目前还没有定论,同时许多刺吸式昆虫唾液中的氨基酸和蛋白酶还是引起植物虫瘿的原因之一。 迄今的研究表明,刺吸式昆虫会根据不同的寄主植物和不同的生理需要,通过唾液组分的改变,来达到取食和发育的目的。对刺吸式昆虫唾液成分和作用机理的研究,可以为揭示刺吸式昆虫致害机理特别是传毒机理、指导害虫有效治理、阐明其与植物的协同进化等提供一定的思路。  相似文献   

3.
Zusammenfassung Im Speichel der Rhynchoten gibt es verschiedene Verdauungsenzyme, die eine weitgehende Anpassung hinsichtlich der Art der Nahrung aufweisen und bei der Verdauung wichtig sind. Zugleich gibt es im Rhynchotenspeichel auch Pflanzenwuchs hemmende Stoffe Auxine und Viren, die alle Krankheitszustände bei den Nahrungspflanzen verursachen welche ihrerseits die Lebensbedingungen der Schädlinge fördern.
Summary The above article is a short survey of the relation between the salivary secretions of the Hemiptera and their host plants.In analyses of the composition secretions in the salivary glands of phytophagous Homoptera and Heteroptera, the most extensive work has been done on the digestive enzymes. Proteases, amylases, saccharase, maltase, pectinase and lipase have been detected, but most commonly only 2–3 of these occurs in any one species. An adaptation of the enzyme complement to the diet is evident and in this respect the feeding site used by the insect is especially decisive to the enzyme composition of the saliva. Proteases and amylases occur in the saliva of mesophyll feeders, but are absent in phloem feeders, for which they are useless because, from the insect's point of view, the food is already digested. The adaptation of the salivary enzymes to the nature of the food seems to be largely inherited for a diet containing nothing but sucrose does not induce adaptive changes in the enzyme content of the salivary glands. By contrast, papain seems to be transferred from a synthetic food to the salivary glands.The disease symptoms caused in plants by the salivary toxins of Homoptera and Heteroptera have many similarities to those caused by abnormal amounts of growth hormones. Indole-tri-acetic acid has been detected in extracts of crushed aphids and leafhoppers, although no growth stimulating hormones have been detected in salivary glands dissected from several heteropterous bugs and one aphid. On the contrary, substances inhibiting plant growth exist in the salivary glands of many Heteroptera and in at least one aphid. In some experiments with a heteropterous bug, indole-triacetic was observed to have been transferred from a synthetic diet to the salivary glands. It seems possible that auxins, enzymes and other phytotoxic substances occurring in the salivary glands of insects may at last in some cases originate from the host plant and are not produced by the insect.The salivary enzymes without doubt play an important role in the digestion of the insects secreting them. They are important also in the differentation of Homoptera and Heteroptera to different modes of life. The auxins or auxin inhibitors, as wel as all phytotoxic substances in the salivary glands of Homoptera and Heteroptera are significant for these animals by changing the physiological state of the host plant in such a direction that its suitability as a source of food increases.
  相似文献   

4.
5.
The Sunn pest, Eurygaster integriceps, the bird cherry-oat aphid, Rhopalosiphum padi, and wheat thrips, Haplothrips tritici are the major pests of wheat and other cereals in a wide area of the world. All these three insect species could produce damage to the wheat to some extent. Therefore, the purpose of the present study was to determine α- and β-mannosidase of the three mentioned insect pests. These insects were collected from the wheat farm and their guts (the Sunn pest and the aphid) and salivary glands of Sunn pest were removed. However, regarding tiny body of thrips, the whole body used in order to extract the enzymes. The enzymes, including α- and β-mannosidase activity, were measured by the hydrolysis of p-nitrophenyl-α-d-mannopyranoside (pNPαGal) and p-nitrophenyl-β-d-mannopyranoside (pNPβGal), respectively, using phosphate citrate buffer (pH 5.0). Mannosidases were not active in all three tested insect species, and also there were significant differences in activities of the two enzymes in three species. The greatest activity of α-mannosidases was observed in the Sunn pest salivary glands, E. integriceps, and the least activity was found in Sunn pest midgut with no activity. However, the activity of β-mannosidase was established in Sunn pest midgut, but there was no activity in the aphid midgut, R. padi. Activities of these two enzymes were modest in the thrips, H. tritici. The greatest amount of β-mannosidases in the Sunn pest midgut makes sense, since the Sunn pest is the main pest in the wheat farm that can feed on wheat grains. In the wheat grains, the highest amount of glycoproteins and glycolipids are present. Thus, it has been known that these enzymes (α- and β-mannosidases) are active on digestion of carbohydrates.  相似文献   

6.
Histochemical localization of acetylcholinesterase and butyrylcholinesterase in the salivary glands has unfolded the significant fact that salivary glands are of two types, one being enzymatically negative and the other showing positive activity. Activity of these enzymes has been linked with the operation of glandular dynamics, particularly concerning the synthetic and secretory processes. The enzymes have been seen localized in the core of jaw. Contrary to it they are absent in the papillary and interpapillary zones of the jaw. Absence of esterases in the papillary and interpapillary ductules has been correlated with its possible non-involvement in the synthesis of vasodilating and anticoagulating materials. The experiments on effect of biting on host tissue give a faint indication of vascular dilation due to bite. Likewise, experiments on enzymatic state of a salivary gland after leech-bite reveal that the diminution of the reactive coverage area in the salivary glands reaches its maximum in the case of ATPase, indicating thereby its more involvement in salivary functions than those of esterases and acid phosphatase.  相似文献   

7.
彭露  严盈  万方浩  王进军 《昆虫知识》2010,47(5):1017-1020
以B型烟粉虱Bemisia tabaci(Gennadius)成虫为材料,介绍了一种微型刺吸式昆虫唾液酶鉴定和分析的方法,主要包括人工饲养、唾液收集、唾液多酚氧化酶(PPO)和过氧化物酶(POD)的鉴定与活性分析。结果显示,B型烟粉虱在特异性嗜好寄主甘蓝上分泌的多酚氧化酶与过氧化物酶的比活力分别为嗜好寄主番茄上的1.54和1.65倍。该方法操作简捷,鉴定结果直观清晰,酶活测定灵敏,适合于其他微型刺吸式昆虫如蚜虫、木虱等的唾液酶研究。  相似文献   

8.
9.
苏建亚 《昆虫学报》2019,62(6):756-768
内向整流钾离子通道(inwardly-rectifying potassium channels, Kir)在动物体内承担着重要的生理功能。有关昆虫Kir的研究虽然不多,但近5年来却取得许多重要进展,本文就昆虫Kir近年来的研究进展进行评述。目前对昆虫Kir的研究主要集中在双翅目与半翅目,对基因组的分析以及基因克隆研究表明,昆虫Kir基因数量较少,远低于哺乳动物。双翅目的冈比亚按蚊Anopheles gambiae与埃及伊蚊Aedes aegypti有5~6个Kir基因,黑腹果蝇Drosophila melanogaster仅3个Kir基因,半翅目的褐飞虱Nilaparvata lugens与热带臭虫Cimex lectularius也只有3个Kir基因,而大豆蚜Aphis glycines的Kir基因数则减少到2个,第3个Kir基因的丢失可能与其马氏管的退化有关。系统进化分析表明昆虫Kir具有3个亚家族,但与哺乳动物的7个Kir亚家族没有直系同源关系。尽管如此,昆虫Kir具有与哺乳动物Kir类似的基本结构特征:由4个亚基组成四聚体通道,每个亚基具有2个跨膜区(TM1与TM2),TM1与TM2之间具K^+选择过滤序列。昆虫的Kir基因主要在唾液腺与马氏管中高水平表达,Kir抑制剂可阻断唾液腺与马氏管的分泌活性,从而影响昆虫的取食与排泄活动并使昆虫致死,说明这2类组织器官的分泌活性与Kir有关,Kir介导的K^+跨膜转运驱动了这类组织中上皮细胞的分泌活动。更为重要的发现是氟啶虫酰胺对褐飞虱Kir具有很高的阻断活性,并影响其唾液分泌与排泄功能,证明了Kir就是该杀虫剂的分子靶标。最后本文还对昆虫Kir研究中存在的科学问题进行了分析,展望了开发靶向Kir的新型杀虫剂的研究前景。  相似文献   

10.
The spined soldier bug, Podisus maculiventris, is a generalist predator of insects and has been used in biological control. However, information on the digestion of food in this insect is lacking. Therefore, we have studied the digestive system in P. maculiventris, and further characterized carbohydrases in the digestive tract. The midgut of all developmental stages was composed of anterior, median, and posterior regions. The volumes of the anterior midgut decreased and the median midgut increased in older instars and adults, suggesting a more important role of the median midgut in food digestion. However, carbohydrase activities were predominant in the anterior midgut. In comparing the specific activity of carbohydrases, α‐amylase activity was more in the salivary glands (with two distinct activity bands in zymograms), and glucosidase and galactosidase activities were more in the midgut. Salivary α‐amylases were detected in the prey hemolymph, demonstrating the role of these enzymes in extra‐oral digestion. However, the catalytic efficiency of midgut α‐amylase activity was approximately twofold more than that of the salivary gland enzymes, and was more efficient in digesting soluble starch than glycogen. Midgut α‐amylases were developmentally regulated, as one isoform was found in first instar compared to three isoforms in fifth instar nymphs. Starvation significantly affected carbohydrase activities in the midgut, and acarbose inhibited α‐amylases from both the salivary glands and midgut in vitro and in vivo. The structural diversity and developmental regulation of carbohydrases in the digestive system of P. maculiventris demonstrate the importance of these enzymes in extra‐oral and intra‐tract digestion, and may explain the capability of the hemipteran to utilize diverse food sources.  相似文献   

11.
昆虫碱性磷酸酶的研究进展   总被引:3,自引:0,他引:3  
严盈  彭露  刘万学  万方浩 《昆虫学报》2009,52(1):95-105
碱性磷酸酶存在于昆虫的头、唾液腺(唾液)、肠道、马氏管、表皮、血淋巴、脂肪体、生殖系统、附肢等部位,广泛参与了昆虫的发育、神经传导、激素合成、物质代谢、滞育、社会型昆虫亚种形成等过程。同时碱性磷酸酶与昆虫抗性有关,特别涉及到对Bt制剂的阻滞作用,其本身也是某些农药的靶标酶,某些生物源化合物及病毒、真菌也可以影响其活性。昆虫碱性磷酸酶的研究,将有助于提高对昆虫生化机制及代谢过程的认识,并为害虫治理和资源昆虫饲养提供新的思路。本文综述了国内外对昆虫碱性磷酸酶的研究状况,并描述了昆虫碱性磷酸酶的生化性质及其与生理功能的关系。  相似文献   

12.
The wheat bug Eurygaster maura (Hemiptera: Scutelleridae) is a potential pest of wheat and barley in Iran and other countries. Two major digestive enzymes of this insect, α‐d ‐glucosidase and β‐d ‐glucosidase, have been investigated. The midgut has four distinct regions including the first ventriculus (V1), second ventriculus (V2), third ventriculus (V3) and fourth ventriculus (V4). The study showed that the first three regions of the wheat bug midgut were acidic (pH 5.5–6), the fourth region of the midgut and hindgut pH were slightly acidic (pH 6.5–6.9) and the salivary gland (labial gland) pH was determined to be somewhat acidic (pH 5–5.5). Enzyme assay showed that α‐ and β‐glucosidase activity is present in both midgut and salivary glands of adult E. maura. The specific activities of midgut α‐ and β‐glucosidase were 11.2 and 10.8 mU/mg protein, respectively. The specific activities of these enzymes in salivary glands were 3.06 and 2.73 mU/mg protein, respectively. Optimum temperature and pH values for glucosidases were determined to be 30–35°C and 5, respectively. Glucosidases of the midgut were more stable than salivary glucosidases at 35°C. Evaluating enzymatic kinetic parameters showed that glucosidases of the midgut had more affinity as well as more velocity than that of salivary glands.  相似文献   

13.
A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away from the injection site. Thus, the present study provides support for the salivation-egestion hypothesis.  相似文献   

14.
Management of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra‐oral and gut‐based digestion thwarting protein‐ or nucleotide‐based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut of H. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8–10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge of H. halys digestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein‐ or nucleotide‐based management options targeting this pest.  相似文献   

15.
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races—corn and rice strains—of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.  相似文献   

16.
Trypanosoma rangeli is the trypanosomatid that colonizes the salivary gland of its insect vector, with a profound impact on the feeding capacity of the insect. In this study we investigated the role of the phosphotyrosine (P-Tyr) ecto-phosphatase activity of T. rangeli in its interaction with Rhodnius prolixus salivary glands. Long but not short epimastigotes adhered to the gland cells and the strength of interaction correlated with the enzyme activity levels in different strains. Differential interference contrast microscopy demonstrated that clusters of parasites are formed in most cases, suggesting cooperative interaction in the adhesion process. The tightness of the correlation was evidenced by modulating the P-Tyr ecto-phosphatase activity with various concentrations of inhibitors. Sodium orthovanadate, ammonium molybdate and zinc chloride decreased the interaction between T. rangeli and R. prolixus salivary glands in parallel. Levamisole, an inhibitor of alkaline phosphatases, affected neither process. EDTA strongly inhibited adhesion and P-Tyr ecto-phosphatase activity to the same extent, an effect that was no longer seen if the parasites were pre-incubated with the chelator and then washed. When the P-Tyr ecto-phosphatase of living T. rangeli epimastigotes was irreversibly inactivated with sodium orthovanadate and the parasite cells were then injected into the insect thorax, colonization of the salivary glands was greatly depressed for several days after blood feeding. Addition of P-Tyr ecto-phosphatase substrates such as p-nitrophenyl phosphate (pNPP) and P-Tyr inhibited the adhesion of T. rangeli to salivary glands, but P-Ser, P-Thr and β-glycerophosphate were completely ineffective. Immunoassays using anti-P-Tyr-residues revealed a large number of P-Tyr-proteins in extracts of R. prolixus salivary glands, which could be potentially targeted by T. rangeli during adhesion. These results indicate that dephosphorylation of structural P-Tyr residues on the gland cell surfaces, mediated by a P-Tyr ecto-phosphatase of the parasite, is a key event in the interaction between T. rangeli and R. prolixus salivary glands.  相似文献   

17.
The digestive physiology of the germ-free animal has a number of characteristics (cecal hypertrophy, slower small intestine cell renewal, slower gastric emptying and intestinal transit) which distinguish it from that of the conventional animal. If the germ-free model is to be used to determine the role of gastrointestinal microflora in the nutrition of the conventional animal, it is essential to complete the study of these characteristics by data on digestive enzymes in the germ-free. The present paper analyzes these data. There is little information on salivary amylase and none on gastric proteolytic enzymes and intestinal peptidases. More complete data on exocrine pancreas enzymes and intestinal disaccharidases show that the digestive equipment is similar in germ-free and conventional animals. Bile salts, not considered as digestive enzymes, are qualitatively and quantitatively different, depending on the digestive tract bacterial environment. In general, the germ-free animal has some characteristics which should permit better utilization of the diet ingested. Measurements of apparent digestibility do not confirm this hypothesis since results obtained in germ-free and conventional animals of the same species are contradictory.  相似文献   

18.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

19.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

20.
The giant waterbugs are predators that utilize extra-oral digestion and are known to capture a wide variety of prey. Herein we describe the differences in salivary enzyme composition between large and small species of giant waterbug (Lethocerus uhleri, Lethocerinae and Belostoma lutarium, Belostomatinae, respectively). The saliva of L. uhleri contains 3 proteolytic enzymes and no amylase, while the salivary gland of B. lutarium produces 2 proteolytic enzymes and amylase. This fundamental difference in salivary enzyme composition correlates with the difference in diet preference between the Lethocerinae and Belostomatinae. Furthermore, we describe the ultrastructure of the salivary gland complex of B. lutarium and present data on the division of labor with respect to compartmentalization of enzyme production. Proteolytic enzymes are produced in the accessory salivary gland and amylase is produced in the main salivary gland lobe. This is the first reported evidence of protease production in the accessory salivary gland in the Heteroptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号