首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The regulation of open complex formation at the Escherichia coli galactose operon promoters by galactose repressor and catabolite activator protein/cyclic AMP (CAP/cAMP) was investigated in DNA-binding and kinetic experiments performed in vitro. We found that gal repressor and CAP/cAMP bind to the gal regulatory region independently, resulting in simultaneous occupancy of the two gal operators and the CAP/cAMP binding site. Both CAP/cAMP and gal repressor altered the partitioning of RNA polymerase between the two overlapping gal promoters. Open complexes formed in the absence of added regulatory proteins were partitioned between gal P1 and P2 with occupancies of 25% and 75%, respectively. CAP/cAMP caused open complexes to be formed nearly exclusively at P1 (98% occupancy). gal repressor caused a co-ordinated, but incomplete, switch in promoter partitioning from P1 to P2 in both the absence and presence of CAP/cAMP. We measured the kinetic constants governing open complex formation and decay at the gal promoters in the absence and presence of gal repressor and CAP/cAMP. CAP/cAMP had the largest effect on the kinetics of open complex formation, resulting in a 30-fold increase in the apparent binding constant. We conclude that the regulation of open complex formation at the gal promoters does not result from competition between gal repressor, CAP/cAMP and RNA polymerase for binding at the gal operon regulatory region, but instead results from the interactions of the three proteins during the formation of a nucleoprotein complex on the gal DNA fragment. Finally, we present a kinetic model for the regulation of open complex formation at the gal operon.  相似文献   

10.
11.
12.
13.
14.
A new target for CRP action at the malT promoter.   总被引:11,自引:0,他引:11       下载免费PDF全文
M Menendez  A Kolb    H Buc 《The EMBO journal》1987,6(13):4227-4234
  相似文献   

15.
16.
17.
18.
19.
Tang GQ  Patel SS 《Biochemistry》2006,45(15):4947-4956
To form a functional open complex, bacteriophage T7 RNA polymerase (RNAP) binds to its promoter DNA and induces DNA bending and opening. The objective of this study was to elucidate the temporal coupling in DNA binding, bending, and opening processes that occur during initiation. For this purpose, we conducted a combined measurement of stopped-flow fluorescence anisotropy, fluorescence resonance energy transfer (FRET), and 2-aminopurine fluorescence. Stopped-flow anisotropy measurements provided direct evidence of an intermediate resulting from rapid binding of the promoter to T7 RNA polymerase. Stopped-flow FRET measurements showed that promoter bending occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly bent. Similarly, stopped-flow 2-aminopurine fluorescence changes showed that promoter opening occurred at a rate constant that was slower than the initial DNA binding rate constant, indicating that the initial complex was not significantly melted. The indistinguishable observed rate constants of FRET and 2-aminopurine fluorescence changes indicate that DNA bending and opening processes are temporally coupled and these DNA conformational changes take place after the DNA binding step. The results in this paper are consistent with the mechanism in which the initial binding of T7 RNAP to the promoter results in a closed complex, which is then converted into an open complex in which the promoter is both sharply bent and melted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号