首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative theory suggests that LDL oxidation contributes to atherogenesis, implying that attenuation of this process by antioxidants should decrease atherosclerosis. However, a causative link between LDL oxidation and atherogenesis is not firmly established. It requires the identification of the oxidants that are responsible for the initiation of LDL oxidation, and an understanding of the modified moieties that are responsible for the proatherogenic activities of oxidized LDL. The present review summarizes recent data on potential biological oxidants for LDL in the vessel wall, and discusses the antiatherogenic role(s) of selected antioxidants.  相似文献   

2.
The oxidation hypothesis of atherosclerosis proposes that oxidized LDL is a major causative factor in the development of atherosclerosis. Although this hypothesis has received strong mechanistic support and many animal studies demonstrated profound atheroprotective effects of antioxidants, which reduce LDL oxidation, the results of human clinical trials with antioxidants were mainly negative, except in selected groups of patients with clearly increased systemic oxidative stress. We propose that even if reducing lipoprotein oxidation in humans might be difficult to achieve, deeper understanding of mechanisms by which oxidized LDL promotes atherosclerosis and targeting these specific mechanisms will offer novel approaches to treatment of cardiovascular disease. In this review article, we focus on oxidized cholesteryl esters (OxCE), which are a major component of minimally and extensively oxidized LDL and of human atherosclerotic lesions. OxCE and OxCE-protein covalent adducts induce profound biological effects. Among these effects, OxCE activate macrophages via toll-like receptor-4 (TLR4) and spleen tyrosine kinase and induce macropinocytosis resulting in lipid accumulation, generation of reactive oxygen species and secretion of inflammatory cytokines. Specific inhibition of OxCE-induced TLR4 activation, as well as blocking other inflammatory effects of OxCE, may offer novel treatments of atherosclerosis and cardiovascular disease. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.  相似文献   

3.
The oxidation theory of atherosclerosis proposes that the oxidative modification of low-density lipoproteins (LDL) plays a central role in the disease. Although a direct causative role of LDL oxidation for atherogenesis has not been established, oxidized lipoproteins are detected in atherosclerotic lesions, and in vitro oxidized LDL exhibits putative pro-atherogenic activities. alpha-Tocopherol (alpha-TOH; vitamin E), the major lipid-soluble antioxidant present in lipoproteins, is thought to be antiatherogenic. However, results of vitamin E interventions on atherosclerosis in experimental animals and cardiovascular disease in humans have been inconclusive. Also, recent mechanistic studies demonstrate that the role of alpha-TOH during the early stages of lipoprotein lipid peroxidation is complex and that the vitamin does not act as a chain-breaking antioxidant. In the absence of co-antioxidants, compounds capable of reducing the alpha-TOH radical and exporting the radical from the lipoprotein particle, alpha-TOH exhibits anti- or pro-oxidant activity for lipoprotein lipids depending on the degree of radical flux and reactivity of the oxidant. The model of tocopherol-mediated peroxidation (TMP) explains the complex molecular action of alpha-TOH during lipoprotein lipid peroxidation and antioxidation. This article outlines the salient features of TMP, comments on whether TMP is relevant for in vivo lipoprotein lipid oxidation, and discusses how co-antioxidants may be required to attenuate lipoprotein lipid oxidation in vivo and perhaps atherosclerosis.  相似文献   

4.
《Life sciences》1995,57(3):PL51-PL56
Oxidative modification of low density lipoprotein (LDL) has been suggested to be a risk factor for the development of atherosclerosis. Agents which can protect LDL from oxidation may be useful in preventing atherogenesis. Here, we found that morin hydrate, at 100 μM concentration, effectively inhibits Cu2+- induced oxidation of LDL. The oxidation of LDL was assessed by agarose gel electrophoresis. This was further studied by measuring the increased values of the malondialdehyde equivalents and the decreased numbers of reactive amino groups on oxidized LDL. Trolox, at equimolar concentrations, exhibit similar effects in preventing oxidation of LDL.  相似文献   

5.
The wide acceptance of the diene conjugation-method in monitoring low-density lipoprotein (LDL) oxidation ex vivo has led to development of an assay, which measures the amount of baseline diene conjugation (BDC) in circulating LDL, and is an indicator of oxidized LDL in vivo. The LDL-BDC assay is based on precipitation of serum LDL with buffered heparin, and spectrophotometric determination of baseline level of conjugated dienes in lipids extracted from LDL. Compared to existing methods for oxidized LDL, LDL-BDC is fast and simple to perform. Chemical studies by HPLC and NMR have verified that LDL-BDC is a specific indicator of circulating mildly oxidized LDL. Validity of the assay is further indicated by strong correlation with the titer of autoantibodies against oxidized LDL. Clinical studies have shown that LDL-BDC is closely related to coronary, carotid, and brachial atherosclerosis. Moreover, several independent studies have demonstrated surprisingly strong associations between LDL-BDC and known atherosclerosis risk factors (obesity, physical inactivity, hypertension, diabetes, and arterial functions). Indeed, these studies seem to indicate that as an indicator of the risk of atherosclerosis LDL-BDC clearly exceeds sensitivity and specificity of the common lipid markers of atherosclerosis. It is concluded that LDL-BDC is a promising candidate in search for methods for the evaluation of in vivo LDL oxidation and the risk of atherosclerosis.  相似文献   

6.
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although little direct evidence for a causative role of 'oxidized LDL' in atherogenesis exists, several studies show that, in vitro, oxidized LDL exhibits potentially proatherogenic activities and lipoproteins isolated from atherosclerotic lesions are oxidized. As a consequence, the molecular mechanisms of LDL oxidation and the actions of alpha-tocopherol (alpha-TOH, vitamin E), the major lipid-soluble lipoprotein antioxidant, have been studied in detail. Based on the known antioxidant action of alpha-TOH and epidemiological evidence, vitamin E is generally considered to be beneficial in coronary artery disease. However, intervention studies overall show a null effect of vitamin E on atherosclerosis. This confounding outcome can be rationalized by the recently discovered diverse role for alpha-TOH in lipoprotein oxidation; that is, alpha-TOH displays neutral, anti-, or, indeed, pro-oxidant activity under various conditions. This review describes the latter, novel action of alpha-TOH, termed tocopherol-mediated peroxidation, and discusses the benefits of vitamin E supplementation alone or together with other antioxidants that work in concert with alpha-TOH in ameliorating lipoprotein lipid peroxidation in the artery wall and, hence, atherosclerosis.  相似文献   

7.
8.
Oxidized low density lipoprotein and innate immune receptors   总被引:15,自引:0,他引:15  
PURPOSE OF REVIEW: Atherosclerosis is now recognized as a chronic inflammatory disease. This review discusses recent literature reporting that innate immune receptors bind oxidatively modified LDL and its many oxidized moieties and consequently modulate the atherogenic process. These innate pattern recognition receptors are known to play a central role in pro-inflammatory responses to bacteria by binding pathogen-associated molecular patterns. It is hypothesized that oxidized LDL exposes similar molecular patterns recognized by receptors of innate immunity. RECENT FINDINGS: Minimally modified LDL and its oxidized phospholipids have been found to bind to CD14 or activate Toll-like receptors on macrophages. In turn, various biological activities have been induced, including the stimulation of cytoskeletal rearrangements that alter phagocytic activity and the stimulation of cytokine secretion, such as IL-8. These findings link modified LDL with innate pattern recognition receptors, such as those involved in the lipopolysaccharide signaling pathway. Human epidemiological studies support the involvement of CD14 and TLR4 in cardiovascular diseases. Oxidized LDL has also been demonstrated to bind to C-reactive protein, an opsonic molecule activating classic complement pathway and Fcgamma receptor endocytosis. These data suggest that C-reactive protein may not only be a strong predictor of clinical disease, but may also play a role in atherogenesis. Recent data on other innate immune receptors are discussed in the context of their potential interactions with oxidized LDL and atherogenesis. SUMMARY: Recent findings suggest that oxidized forms of LDL interact with innate immune receptors. Further studies are needed to identify the role of these interactions in inflammation and atherosclerosis.  相似文献   

9.
Platelet-derived growth factor (PDGF) is secreted by several cells that participate in the process of atherogenesis, including arterial wall monocyte-derived macrophages. Macrophages in human and non-human primate lesions have recently been demonstrated to contain PDGF-B chain protein in situ. In developing lesions of atherosclerosis, macrophages take up and metabolize modified lipoproteins, leading to lipid accumulation and foam cell formation. Oxidatively modified low density lipoproteins (LDL) have been implicated in atherogenesis and have been demonstrated in atherosclerotic lesions. The effects of the uptake of various forms of modified LDL on PDGF gene expression, synthesis, and secretion in adherent cultures of human blood monocyte-derived macrophages were examined. LDL oxidized in a cell-free system in the presence of air and copper inhibited the constitutive expression of PDGF-B mRNA and secretion of PDGF in a dose-dependent fashion. Oxidatively modified LDL also attenuated lipopolysaccharide-induced PDGF-B mRNA expression. These changes were unrelated to the mechanism of lipid uptake and the degree of lipid loading and were detectable within 2 h of exposure to oxidized LDL. The degree of inhibition of both basal and lipopolysaccharide-induced PDGF-B-chain expression increased with the extent of LDL oxidation. Monocyte-derived macrophages exposed to acetylated LDL or LDL aggregates accumulated more cholesterol than cells treated with oxidized LDL, but PDGF expression was not consistently altered. Thus, uptake of a product or products of LDL oxidation modulates the expression and secretion of one of the principal macrophage-derived growth factors, PDGF. This modulation may influence chemotaxis and mitogenesis of smooth muscle cells locally in the artery wall during atherogenesis.  相似文献   

10.
Although it has been known for long time that atherosclerosis is associated with lipid deposition, only recently it has been accepted that the plasmatic concentration of cholesterol, especially LDL cholesterol, is a risk factor for atherosclerosis. However, chemically modified LDL, but not native LDL, is able to induce the formation of foam cells, the hallmark of atherosclerosis. LDL oxidation is likely to be the most important form of LDL modification in humans. In biochemical terms, LDL oxidation is a free radical driven chain reaction where polyunsaturated fatty acids are converted to lipid peroxides, which easily decompose to many products, including biologically active aldehydes. The assay of LDL oxidation in biological fluids is problematic; direct assays detect a product of LDL oxidation whereas indirect assays give an indicator of LDL oxidation susceptibility. In general, epidemiological studies support the concept that the level of plasmatic lipophilic antioxidants, tocopherols and carotenoids, is low in populations at increased risk for atherosclerosis. However, clinical trials based on vitamin E as antioxidant showed inconclusive results, suggesting that supplementation with vitamin E is not generically recommended for atherosclerotic patients. These results, however, do not contradict that oxidation of lipoprotein is involved in atherosclerosis; rather, this negative outcome raises a number of considerations such as the need for a reliable marker of lipoprotein oxidation in plasma and a more complete information about the physiological triggers of lipoprotein oxidation.  相似文献   

11.
Copper-oxidized LDL has many of the characteristics of the modified LDL generated in the artery wall during the initial stages of atherosclerosis. It is not, however, a chemically defined species but shows significant variations in both its chemical composition and behaviour in biological systems depending upon the extent to which the peroxidation reaction has occurred (Fig. 1). Taking care to define the extent of LDL modification we have used this form of oxidized LDL to investigate the effects on the macrophage of this potentially toxic particle. This cell, in contrast to endothelial cells, appears to be particularly well adapted to detoxify lipid peroxidation products since it possesses glutathione peroxidases capable of metabolizing oxidized LDL and responds to oxidized LDL by increasing its GSH content. Acetylated LDL had little or no effect on GSH levels showing that lipid loading per se or recognition by the macrophage scavenger receptor is not sufficient to induce the synthesis of this antioxidant. We have confirmed the observation that oxidized LDL does not activate expression of the gene for TNF and raise the possibility that PGE2 produced by the cells and possibly during the oxidation of LDL may be the mediator suppressing the synthesis of this cytokine. Our results support the hypothesis that the lipid-laden macrophage does not contribute to an inflammatory response in the artery wall and imply a protective role for the macrophage in scavenging oxidized LDL.  相似文献   

12.
The oxidative modification of low-density lipoprotein cholesterol (LDL) has been implicated in the pathogenesis of atherosclerosis. Copper (Cu) is essential for antioxidant enzymes in vivo and animal studies show that Cu deficiency is accompanied by increased atherogenesis and LDL susceptibility to oxidation. Nevertheless, Cu has been proposed as a pro-oxidant in vivo and is routinely used to induce lipid peroxidation in vitro. Given the dual role of Cu as an in vivo antioxidant and an in vitro pro-oxidant, a multicenter European study (FOODCUE) was instigated to provide data on the biological effects of increased dietary Cu. Four centers, Northern Ireland (coordinator), England, Denmark, and France, using different experimental protocols, examined the effect of Cu supplementation (3 or 6 mg/d) on top of normal Cu dietary intakes or Cu-controlled diets (0.7/1.6/6.0 mg/d), on Cu-mediated and peroxynitrite-initiated LDL oxidation in apparently healthy volunteers. Each center coordinated its own supplementation regimen and all samples were subsequently transported to Northern Ireland where lipid peroxidation analysis was completed. The results from all centers showed that dietary Cu supplementation had no effect on Cu- or peroxynitrite-induced LDL susceptibility to oxidation. These data show that high intakes (up to 6 mg Cu) for extended periods do not promote LDL susceptibility to in vitro-induced oxidation.  相似文献   

13.
Serum paraoxonase (PON1), present on high density lipoprotein, may inhibit low density lipoprotein (LDL) oxidation and protect against atherosclerosis. We generated combined PON1 knockout (KO)/apolipoprotein E (apoE) KO and apoE KO control mice to compare atherogenesis and lipoprotein oxidation. Early lesions were examined in 3-month-old mice fed a chow diet, and advanced lesions were examined in 6-month-old mice fed a high fat diet. In both cases, the PON1 KO/apoE KO mice exhibited significantly more atherosclerosis (50-71% increase) than controls. We examined LDL oxidation and clearance in vivo by injecting human LDL into the mice and following its turnover. LDL clearance was faster in the double KO mice as compared with controls. There was a greater rate of accumulation of oxidized phospholipid epitopes and a greater accumulation of LDL-immunoglobulin complexes in the double KO mice than in controls. Furthermore, the amounts of three bioactive oxidized phospholipids were elevated in the endogenous intermediate density lipoprotein/LDL of double KO mice as compared with the controls. Finally, the expression of heme oxygenase-1, peroxisome proliferator-activated receptor gamma, and oxidized LDL receptors were elevated in the livers of double KO mice as compared with the controls. These data demonstrate that PON1 deficiency promotes LDL oxidation and atherogenesis in apoE KO mice.  相似文献   

14.
A crucial and causative role in the pathogenesis of atherosclerosis is believed to be the oxidative modification of low density lipoprotein (LDL). The oxidation of LDL involves released free radical driven lipid peroxidation. Several lines of evidence support the role of oxidized LDL in atherogenesis. Epidemiologic studies have demonstrated an association between an increased intake of dietary antioxidant vitamins, such as vitamin E and vitamin C and reduced morbidity and mortality from coronary artery diseases. It is thus hypothesized that dietary antioxidants may help prevent the development and progression of atherosclerosis. The oxidation of LDL has been shown to be reduced by antioxidants, and, in animal models, improved antioxidants may offer possibilities for the prevention of atherosclerosis. The results of several on going long randomized intervention trials will provide valuahle information on the efficacy and safety of improved antioxidants in the prevention of atherosclerosis. This review a evaluates current literature involving antioxidants and vascular disease, with a particular focus on the potential mechanisms.  相似文献   

15.
Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE(-/-) mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions.  相似文献   

16.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2007,46(19):5790-5797
Oxidation of low-density lipoprotein (LDL), the major cholesterol carrier in plasma, is thought to promote atherogenesis via several mechanisms. One proposed mechanism involves fusion of oxidized LDL in the arterial wall; another involves oxidation-induced amyloid formation by LDL apolipoprotein B. To test these mechanisms and to determine the effects of oxidation on the protein secondary structure and lipoprotein fusion in vitro, we analyzed LDL oxidized by nonenzymatic (Cu2+, H2O2, and HOCl) or enzymatic methods (myeloperoxidase/H2O2/Cl- and myeloperoxidase/H2O2/NO2-). Far-UV circular dichroism spectra showed that LDL oxidation induces partial unfolding of the secondary structure rather than folding into cross-beta amyloid conformation. This unfolding correlates with increased negative charge of oxidized LDL and with a moderate increase in thioflavin T fluorescence that may result from electrostatic attraction between the cationic dye and electronegative LDL rather than from dye binding to amyloid. These and other spectroscopic studies of low- and high-density lipoproteins, which encompass amyloid-promoting conditions (high protein concentrations, high temperatures, acidic pH), demonstrate that in vitro lipoprotein oxidation does not induce amyloid formation. Surprisingly, turbidity, near-UV circular dichroism, and electron microscopic data demonstrate that advanced oxidation inhibits heat-induced LDL fusion that is characteristic of native lipoproteins. Such fusion inhibition may result from the accumulation of anionic lipids and lysophospholipids on the particle surface and/or from protein cross-linking upon advanced lipoprotein oxidation. Consequently, oxidation alone may prevent rather than promote LDL fusion, suggesting that additional factors, such as albumin-mediated removal of lipid peroxidation products and/or LDL binding to arterial proteoglycans, facilitate fusion of oxidized LDL in vivo.  相似文献   

17.
Carr AC  Frei B 《Biological chemistry》2002,383(3-4):627-636
Oxidatively modified low-density lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. Peripheral blood leukocytes, such as neutrophils, can oxidize LDL by processes requiring superoxide and redox-active transition metal ions; however, it is uncertain whether such catalytic metal ions are available in the artery wall. Stimulated leukocytes also produce the reactive oxidant hypochlorous acid (HOCl) via the heme enzyme myeloperoxidase. Since myeloperoxidase-derived HOCl may be a physiologically relevant oxidant in atherogenesis, we investigated the mechanisms of neutrophil-mediated LDL modification and its possible prevention by the antioxidant ascorbate (vitamin C). As a sensitive marker of LDL oxidation, we measured LDL thiol groups. Stimulated human neutrophils (5x10(6) cells/ml) incubated with human LDL (0.25 mg protein/ml) time-dependently oxidized LDL thiols (33% and 79% oxidized after 10 and 30 min, respectively). Supernatants from stimulated neutrophils also oxidized LDL thiols (33% oxidized after 30 min), implicating long-lived oxidants such as N-chloramines. Experiments using specific enzyme inhibitors and oxidant scavengers showed that HOCl, but not hydrogen peroxide nor superoxide, plays a critical role in LDL thiol oxidation by neutrophils. Ascorbate (200 microM) protected against neutrophil-mediated LDL thiol oxidation for up to 15 min of incubation, after which LDL thiols became rapidly oxidized. Although stimulated neutrophils accumulated ascorbate during oxidation of LDL, pre-loading of neutrophils with ascorbate did not attenuate oxidant production by the cells. Thus, activated neutrophils oxidize LDL thiols by HOCl- and N-chloramine-dependent mechanisms and physiological concentrations of vitamin C delay this process, most likely due to scavenging of extracellular oxidants, rather than by attenuating neutrophil oxidant production.  相似文献   

18.
Satchell L  Leake DS 《Biochemistry》2012,51(18):3767-3775
Low-density lipoprotein (LDL) has recently been shown to be oxidized by iron within the lysosomes of macrophages, and this is a novel potential mechanism for LDL oxidation in atherosclerosis. Our aim was to characterize the chemical and physical changes induced in LDL by iron at lysosomal pH and to investigate the effects of iron chelators and α-tocopherol on this process. LDL was oxidized by iron at pH 4.5 and 37 °C and its oxidation monitored by spectrophotometry and high-performance liquid chromatography. LDL was oxidized effectively by FeSO(4) (5-50 μM) and became highly aggregated at pH 4.5, but not at pH 7.4. The level of cholesteryl esters decreased, and after a pronounced lag, the level of 7-ketocholesterol increased greatly. The total level of hydroperoxides (measured by the triiodide assay) increased up to 24 h and then decreased only slowly. The lipid composition after 12 h at pH 4.5 and 37 °C was similar to that of LDL oxidized by copper at pH 7.4 and 4 °C, i.e., rich in hydroperoxides but low in oxysterols. Previously oxidized LDL aggregated rapidly and spontaneously at pH 4.5, but not at pH 7.4. Ferrous iron was much more effective than ferric iron at oxidizing LDL when added after the oxidation was already underway. The iron chelators diethylenetriaminepentaacetic acid and, to a lesser extent, desferrioxamine inhibited LDL oxidation when added during its initial stages but were unable to prevent aggregation of LDL after it had been partially oxidized. Surprisingly, desferrioxamine increased the rate of LDL modification when added late in the oxidation process. α-Tocopherol enrichment of LDL initially increased the rate of oxidation of LDL but decreased it later. The presence of oxidized and highly aggregated lipid within lysosomes has the potential to perturb the function of these organelles and to promote atherosclerosis.  相似文献   

19.
Several lines of evidence indicate that oxidized LDL (Ox-LDL) may promote atherogenesis. Hence, the role of antioxidants in the prevention of LDL oxidation needs to be determined. beta-Carotene, in addition to being an efficient quencher of singlet oxygen, can also function as a radical-trapping antioxidant. Since previous studies have failed to show that beta-carotene inhibits LDL oxidation, we re-examined its effect on the oxidative modification of LDL. For these studies, LDL was oxidized in both a cell-free (2.5 microM Cu2+ in PBS) and a cellular system (human monocyte macrophages in Ham's F-10 medium). beta-Carotene inhibited the oxidative modification of LDL in both systems as evidenced by a decrease in the lipid peroxide content (thiobarbituric-acid-reacting substances activity), the negative charge of LDL (electrophoretic mobility) and the formation of conjugated dienes. By inhibiting LDL oxidation, beta-carotene substantially decreased its degradation by macrophages. beta-Carotene (2 microM) was more potent than alpha-tocopherol (40 microM) in inhibiting LDL oxidation. Thus, beta-carotene, like ascorbate and alpha-tocopherol, inhibits LDL oxidation and might have an important role in the prevention of atherosclerosis.  相似文献   

20.
Human macrophages stimulated with interferon-γ generate neopterin and 7,8-dihydroneopterin which interfere with reactive species involved in LDL oxidation. While neopterin was found to have pro-oxidative effects on copper-mediated LDL oxidation, the influence of 7,8-dihydroneopterin is more complex. This study provides detailed information that 7,8-dihydroneopterin reveals both pro-oxidative and anti-oxidative effects on copper mediated LDL oxidation. 7,8-dihydroneopterin inhibited the oxidation of native LDL effectively monitored by (i) formation of conjugated dienes, (ii) relative electrophoretic mobility (EM) and (iii) specific oxidized epitopes. Using minimally oxidized LDL (mi-LDL) or moderately oxidized LDL (mo-LDL) 7,8-dihydroneopterin changed its antioxidative behavior to a strongly pro-oxidative. Incubation of 7,8-dihydroneopterin with native LDL, mi-LDL or mo-LDL in the absence of copper ions showed that formation of conjugated dienes was more increased in mo-LDL than in mi-LDL while no diene formation was observed with native LDL.

We suggest that 7,8-dihydroneopterin is a modulator for LDL oxidation in the presence of copper ions depending on the “oxidative status” of this lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号