首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Results on a Monte Carlo simulation of the hydration of monomer and possible stacked dimer forms of a purine alkaloid series in 200- and 400-water molecule clusters are presented. Investigation of different purine stacked dimers in a 200-water molecule cluster reveals that for caffeine there exists one, for theophylline two and for theobromine four dimers are energetically favorable. For caffeine, the same energetically favored stacked dimer form is observed in both the 200- and 400-water molecule cluster. The main factor stabilizing the preferred dimer stacks is the change in the interaction between water molecules of the monomer cluster and those water molecules in the dimer cluster.  相似文献   

2.
Stefin A folds as a monomer under strongly native conditions. We have observed that under partially denaturing conditions in the temperature range from 74 to 93 degrees C it folds into a dimer, while it is monomeric above the melting temperature of 95 degrees C. Below 74 degrees C the dimer is trapped and it does not dissociate. The dimer is a folded and structured protein as judged by CD and NMR, nevertheless it is no more functional as an inhibitor of cysteine proteases. The monomer-dimer transition proceeds at a slow rate and the activation energy of dimerization at 99 kcal/mol is comparable to the unfolding enthalpy. A large and negative dimerization enthalpy of -111(+/- 8) kcal/mol was calculated from the temperature dependence of the dissociation constant. An irreversible pretransition at 10-15 deg. below the global unfolding temperature has been observed previously by DSC and can now be assigned to the monomer-dimer transition. Backbone resonances of all the dimer residues were assigned using 15N isotopically enriched protein. The dimer is symmetric and the chemical shift differences between the monomer and dimer are localized around the tripartite hydrophobic wedge, which otherwise interacts with cysteine proteases. Hydrogen exchange protection factors of the residues affected by dimer formation are higher in the dimer than in the monomer. The monomer to dimer transition is accompanied by a rapid exchange of all of the amide protons which are protected in the dimer, indicating that the transition state is unfolded to a large extent. Our results demonstrate that the native monomeric state of stefin A is actually metastable but is favored by the kinetics of folding. The substantial energy barrier which separates the monomer from the more stable dimer traps each state under native conditions.  相似文献   

3.
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of transmembrane helices. Helix tilt, helix-helix crossing angle, and helix accessible volume depend on lipid type in a manner consistent with hydrophobic matching concepts: the most relevant lipid property appears to be the bilayer thickness. Although the net helix-helix interaction enthalpy is strongly attractive, analysis of residue-residue interactions reveals significant unfavorable electrostatic repulsion between interfacial glycine residues previously shown to be critical for dimerization. Peptide volume is nearly conserved upon dimerization in all lipid types, indicating that the monomeric helices pack equally well with lipid as dimer helices do with one another. Enthalpy calculations indicate that the helix-environment interaction energy is lower in the dimer than in the monomer form, when solvated by unsaturated lipids. In all lipid environments there is a marked preference for lipids to interact with peptide predominantly through one rather than both acyl chains. Although our trajectories are not long enough to allow a full thermodynamic treatment, these results demonstrate that molecular dynamics simulations are a powerful method for investigating the protein-protein, protein-lipid, and lipid-lipid interactions that determine the structure, stability and dynamics of transmembrane alpha-helices in membranes.  相似文献   

4.
Venken T  Daelemans D  De Maeyer M  Voet A 《Proteins》2012,80(6):1633-1646
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.  相似文献   

5.
The initiator protein RepE of the mini-F plasmid in Escherichia coli plays an essential role in DNA replication, which is regulated by the molecular chaperone-dependent oligomeric state (monomer or dimer). Crosslinking, ultracentrifugation, and gel filtration analyses showed that the solely expressed N-terminal domain (residues 1-144 or 1-152) exists in the dimeric state as in the wild-type RepE protein. This result indicates that the N-terminal domain functions as a dimerization domain of RepE and might be important for the interaction with the molecular chaperones. The N-terminal domain dimer has been crystallized in order to obtain structural insight into the regulation of the monomer/dimer conversion of RepE.  相似文献   

6.
This work demonstrates the conceptual feasibility of a method for systematic and concerted design of a molecular structure with a favorable interaction toward a prescribed target. Since a semi-empirical QM hamiltonian is used to calculate energies, the method described here allows the continual atomic change and reassessment of molecular structure with respect to its own internal energy and its target interaction energy. Modelling the ligand molecular structure on an atomistic basis, in contrast to a fragment basis, permits the construction of higher energy transitional structures which bridge between viable ligand structures. This allows a most thorough way to accomplish meticulous configurational sampling. The use of two examples, the creation of an ammonia molecule to interact with a formic acid target, and a formic acid molecule to form a dimer with a target, more clearly illustrates the features of a temperature guided Monte Carlo simulation which was developed to allow thorough configurational sampling. This is accomplished by appropriately varying the temperature of the MC simulation. A series of random starting configurations underwent this systematic MC sampling procedure to locate various structural and interaction energy minima. The results of these simulations demonstrate thorough configurational sampling and convergence.  相似文献   

7.
EF-hand peptides have been shown to bind calcium and dimerize to form an intact protein domain [Shaw, G.S., Hodges, R.S. & Sykes, B.D. (1990). Science, 249, 280-283]. A synthetic 33-residue EF-hand peptide with the sequence of carp parvalbumin CD site demonstrated a seven-fold increase in the apparent calcium dissociation constant with a eight-fold decrease in peptide concentration when fit to a single-site calcium-binding model. This observation is consistent with EF-hand dimerization. This paper describes a method to determine the dimerization dissociation constant and the calcium dissociation constants for both the monomer and dimer forms of this EF-hand peptide using circular dichroism techniques. By monitoring the increase in negative molar ellipticity at 222 nm with increasing peptide concentration under calcium-saturating conditions the dimerization dissociation constant for the synthetic parvalbumin CD site was determined to be 55.68+/-10.76 microM. Using the dimerization constant, the calcium dissociation constants for both the monomer and dimer forms of this peptide were determined by monitoring the change in ellipticity of peptide solutions on addition of increasing amounts of calcium. A fit of this data to a mathematical model that takes into account dimerization results in calcium dissociation constants of 421.3+/-21.56 and 47.06+/-6.72 microM for the monomer and dimer forms, respectively.  相似文献   

8.
We describe a kinetic Monte Carlo molecular simulation procedure to calculate the Helmholtz free energy, the entropy and the chemical potentials of all components in a bulk fluid mixture. This allows us to derive the excess properties (volume, free energy and entropy) resulting from the mixing of homogeneous fluids of pure components at constant temperature and pressure. We have chosen neon–xenon mixtures to illustrate our method because of the large difference in collision diameter and well-depth of the interaction energy. When xenon is predominant in the mixture, the volume of mixing is larger. The excess entropy of mixing correlates with the volume of mixing, since a positive excess volume enables more configurations (more possible molecular distributions). The excess thermodynamic quantities as functions of the total density were found to be insensitive to temperature. To investigate the effects of the molecular parameters, we also studied argon–nitrogen and argon–krypton mixtures. The effect of the difference in molecular parameters is in the order: argon–nitrogen < argon–krypton < neon–xenon. A large difference in the well-depth of the interaction energies results in an increase in the excess thermodynamic variables, which is in agreement with the literature McDonald IR. NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol Phys. 1972;23(1):41–58; Singer JVL, Singer K. Monte Carlo calculation of thermodynamic properties of binary mixtures of Lennard-Jones (12-6) liquids. Mol Phys. 1972;24(2):357–390.  相似文献   

9.
A number of different monomer and dimer derivatives of protein L7/L12 has been studied in EF-G-dependent reactions on the ribosome. It has been shown that only dimer derivatives of protein L7/L12 are able to interact with the ribosome. This means that it is the dimer forms of protein L7/L12 that are present in the functionally active ribosome. It is likely that the N-terminal sequence of protein L7/L12 is responsible for dimerization of the protein in solution and at the same time contributes mainly to the interaction of the protein L7/L12 dimer with the ribosome. The results obtained suggest that there are four copies of protein L7/L12 in the translating ribosome.  相似文献   

10.
Proton NMR studies of Saccharomyces cerevisiae (bakers yeast) isozyme-1 monomer and dimer ferricytochrome c have been carried out. The dimer is formed via a disulfide bridge between the Cys-102 residues of monomer proteins. Nuclear Overhauser effect (NOE) experiments have led to resonance assignments for many of the heme and axial ligand (Met-80; His-18) protons in both protein forms. Resonances of the following amino acids have also been assigned in both forms: Phe-10; Pro-30; Phe-82; Trp-59; Leu-68. The proton NOE connectivity patterns of the monomer of yeast isozyme-1 ferricytochrome c are similar to those of horse, tuna, and yeast isozyme-2 ferricytochromes c, even though the observed hyperfine resonance spectra are significantly different for the various cytochromes. The pattern of dimer proton hyperfine resonances is distinct from the isozyme-1 monomer pattern, which indicates that the formation of a disulfide bridge via Cys-102 is detected at the heme site, approximately 10 A distant. It appears that a specific structural change is induced upon dimerization, which, in turn, causes specific perturbations in the vicinity of the heme. However, the general features of the NOE connectivity pattern in the dimer are the same as for the monomer indicating that dimerization does not result in drastic structural disruption. Furthermore, the 1H NMR spectrum of the dimer can be mimicked by the monomer form that results when the -SH group of Cys-102 is chemically modified with certain types of bulky, or hydrophilic reagents (i.e. 5,5'-dithiobis[2-nitrobenzoate], indicating that perturbations of the yeast isozyme-1 ferricytochrome c proton resonance spectrum observed upon dimerization are essentially due to changes in intramolecular, rather than intermolecular, interactions. These results suggest that a possible regulatory site for yeast isozyme-1 cytochrome c exists at position 102, which could conceivably have a physiological role in altering the conformation of the molecule.  相似文献   

11.
HIV-1 protease (PR) is a major drug target in combating AIDS, as it plays a key role in maturation and replication of the virus. Six FDA-approved drugs are currently in clinical use, all designed to inhibit enzyme activity by blocking the active site, which exists only in the dimer. An alternative inhibition mode would be required to overcome the emergence of drug-resistance through the accumulation of mutations. This might involve inhibiting the formation of the dimer itself. Here, the folding of HIV-1 PR dimer is studied with several simulation models appropriate for folding mechanism studies. Simulations with an off-lattice Gō-model, which corresponds to a perfectly funneled energy landscape, indicate that the enzyme is formed by association of structured monomers. All-atom molecular dynamics simulations strongly support the stability of an isolated monomer. The conjunction of results from a model that focuses on the protein topology and a detailed all-atom force-field model suggests, in contradiction to some reported equilibrium denaturation experiments, that monomer folding and dimerization are decoupled. The simulation result is, however, in agreement with the recent NMR detection of folded monomers of HIV-1 PR mutants with a destabilized interface. Accordingly, the design of dimerization inhibitors should not focus only on the flexible N and C termini that constitute most of the dimer interface, but also on other structured regions of the monomer. In particular, the relatively high phi values for residues 23-35 and 79-87 in both the folding and binding transition states, together with their proximity to the interface, highlight them as good targets for inhibitor design.  相似文献   

12.
We used molecular dynamics simulation to evaluate the association properties of C-terminal sterile alpha-motif (SAM) domain of human p73alpha. To test the dimerization propensity of this structure we carried out four simulations: EphB2 X-ray dimer, p73 modeled dimer, p73 NMR monomer, and p73 modeled monomer with an elongated helix 5. The results show a direct interaction between helix 5 and helix 3 since a conformational collapse of helix 3 is observed when dimer contact and/or an elongation of helix 5 is introduced by modeling in p73 SAM domain. On the basis of these results we suggest that the recognition properties of the SAM domains may be modulated by the conformational state of helix 5.  相似文献   

13.
The oligomerization of four peptide sequences, KFFE, KVVE, KLLE, and KAAE is studied using replica-exchange molecular dynamics simulations with an atomically detailed peptide model. Previous experimental studies reported that of these four peptides, only those containing phenylalanine and valine residues form fibrils. We show that the fibrillogenic propensities of these peptides can be rationalized in terms of the equilibrium thermodynamics of their early oligomers. Thermodynamic stability of dimers, as measured by the temperature of monomer association, is seen to be higher for those peptides that are able to form fibrils. Although the relative high and low stabilities of the KFFE and KAAE dimers arise from their respective high and low interpeptide interaction energies, the higher stability of the KVVE dimer over the KLLE system results from the smaller loss of configurational entropy accompanying the dimerization of KVVE. Free energy landscapes for dimerization are found to be strongly sequence-dependent, with a high free energy barrier separating the monomeric and dimeric states for KVVE, KLLE, and KAAE sequences. In contrast, the most fibrillogenic peptide, KFFE, displayed downhill assembly, indicating enhanced kinetic accessibility of its dimeric states. The dimeric phase for all peptide sequences is found to be heterogeneous, containing both antiparallel beta-sheet structures that can grow into full fibrils as well as disordered dimers acting as on- or off-pathway intermediates for fibrillation.  相似文献   

14.
Zhong N  Zhang S  Zou P  Chen J  Kang X  Li Z  Liang C  Jin C  Xia B 《Journal of virology》2008,82(9):4227-4234
The main protease (M(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. It was found that SARS-CoV M(pro) exists in solution as an equilibrium of both monomeric and dimeric forms, and the dimeric form is the enzymatically active form. However, the mechanism of SARS-CoV M(pro) dimerization, especially the roles of its N-terminal seven residues (N-finger) and its unique C-terminal domain in the dimerization, remain unclear. Here we report that the SARS-CoV M(pro) C-terminal domain alone (residues 187 to 306; M(pro)-C) is produced in Escherichia coli in both monomeric and dimeric forms, and no exchange could be observed between them at room temperature. The M(pro)-C dimer has a novel dimerization interface. Meanwhile, the N-finger deletion mutant of SARS-CoV M(pro) also exists as both a stable monomer and a stable dimer, and the dimer is formed through the same C-terminal-domain interaction as that in the M(pro)-C dimer. However, no C-terminal domain-mediated dimerization form can be detected for wild-type SARS-CoV M(pro). Our study results help to clarify previously published controversial claims about the role of the N-finger in SARS-CoV M(pro) dimerization. Apparently, without the N-finger, SARS-CoV M(pro) can no longer retain the active dimer structure; instead, it can form a new type of dimer which is inactive. Therefore, the N-finger of SARS-CoV M(pro) is not only critical for its dimerization but also essential for the enzyme to form the enzymatically active dimer.  相似文献   

15.
Polypyrimidine tract-binding protein (PTB) is an RNA binding protein existing both as dimer and monomer and shuttling between nucleus and cytoplasm. However, the regulation of PTB dimerization and the relationship between their functions and subcellular localization are unknown. Here we find that PTB presents as dimer and monomer in nucleus and cytoplasm respectively, and a disulfide bond involving Cysteine 23 is critical for the dimerization of PTB. Additionally, protein disulfide isomerase (PDI) is identified to be the enzyme that catalyzes the de-dimerization of PTB, which is dependent on the CGHC active site of the a’ domain of PDI. Furthermore, upon DNA damage induced by topoisomerase inhibitors, PTB is demonstrated to be de-dimerized with cytoplasmic accumulation. Finally, cytoplasmic PTB is found to associate with the ribosome and enhances the translation of p53. Collectively, these findings uncover a previously unrecognized mechanism of PTB dimerization, and shed light on the de-dimerization of PTB functionally linking to cytoplasmic localization and translational regulation.  相似文献   

16.
Protein association in lipid membranes is a complex process with thermodynamics directed by a multitude of different factors. Amino-acid sequence is a molecular parameter that affects dimerization as shown by limited directed mutations along the transmembrane domains. Membrane-mediated interactions are also important although details of such contributions remain largely unclear. In this study, we probe directly the free energy of association of Glycophorin A by means of extensive parallel Monte Carlo simulations with recently developed methods and a model that accounts for sequence-specificity while representing lipid membranes faithfully. We find that lipid-induced interactions are significant both at short and intermediate separations. The ability of molecules to tilt in a specific hydrophobic environment extends their accessible interfaces, leading to intermittent contacts during protein recognition. The dimer with the lowest free energy is largely determined by the favorable lipid-induced attractive interactions at the closest distance. Finally, the coarse-grained model employed herein, together with the extensive sampling performed, provides estimates of the free energy of association that are in excellent agreement with existing data.  相似文献   

17.
Vunnam N  Pedigo S 《Biochemistry》2011,50(32):6959-6965
Neural cadherins dimerize through the formation of calcium-dependent strand-crossover structures. Dimerization of cadherins leads to cell-cell adhesion in multicellular organisms. Strand-crossover dimer forms exclusively between the first N-terminal extracellular modules (EC1) of the adhesive partners via swapping of their βA-sheets and docking of tryptophan-2 in the hydrophobic pocket. In the apo-state wild-type cadherin is predominantly monomer, which indicates that the dimerization is energetically unfavorable in the absence of calcium. Addition of calcium favors dimer formation by creating strain in the monomer and lowering the energetic barrier between monomer and dimer. Dynamics of the monomer-dimer equilibrium is vital for plasticity of synapses. Prolines recurrently occur in proteins that form strand-crossover dimer and are believed to be the source of the strain in the monomer. N-cadherins have two proline residues in the βA-sheet. We focused our studies on the role of these two prolines in calcium-dependent dimerization. Spectroscopic, electrophoretic, and chromatopgraphic studies showed that mutations of both prolines to alanines increased the dimerization affinity by ~20-fold and relieved the requirement of calcium in dimerization. The P5A and P6A mutant formed very stable dimers that required denaturation of protein to disassemble in the apo conditions. In summary, the proline residues act as a switch to control the dynamics of the equilibrium between monomer and dimer which is crucial for the plasticity of synapses.  相似文献   

18.
Each catalytic turnover by aerobic ribonucleotide reductase requires the assembly of the two proteins, R1 (alpha(2)) and R2 (beta(2)), to produce deoxyribonucleotides for DNA synthesis. The R2 protein forms a tight dimer, whereas the strength of the R1 dimer differs between organisms, being monomeric in mouse R1 and dimeric in Escherichia coli. We have used the known E. coli R1 structure as a framework for design of eight different mutations that affect the helices and proximal loops that comprise the dimer interaction area. Mutations in loop residues did not affect dimerization, whereas mutations in the helices had very drastic effects on the interaction resulting in monomeric proteins with very low or no activity. The monomeric N238A protein formed an interesting exception, because it unexpectedly was able to reduce ribonucleotides with a comparatively high capacity. Gel filtration studies revealed that N238A was able to dimerize when bound by both substrate and effector, a result in accordance with the monomeric R1 protein from mouse. The effects of the N238A mutation, fit well with the notion that E. coli protein R1 has a comparatively small dimer interaction surface in relation to its size, and the results illustrate the stabilization effects of substrates and effectors in the dimerization process. The identification of key residues in the dimerization process and the fact that there is little sequence identity between the interaction areas of the mammalian and the prokaryotic enzymes may be of importance in drug design, similar to the strategy used in treatment of HSV infection.  相似文献   

19.
The hierarchy of lattice Monte Carlo models described in the accompanying paper (Kolinski, A., Skolnick, J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352, 1994) is applied to the simulation of protein folding and the prediction of 3-dimensional structure. Using sequence information alone, three proteins have been successfully folded: the B domain of staphylococcal protein A, a 120 residue, monomeric version of ROP dimer, and crambin. Starting from a random expanded conformation, the model proteins fold along relatively well-defined folding pathways. These involve a collection of early intermediates, which are followed by the final (and rate-determining) transition from compact intermediates closely resembling the molten globule state to the native-like state. The predicted structures are rather unique, with native-like packing of the side chains. The accuracy of the predicted native conformations is better than those obtained in previous folding simulations. The best (but by no means atypical) folds of protein A have a coordinate rms of 2.25 Å from the native Cα trace, and the best coordinate rms from crambin is 3.18 Å. For ROP monomer, the lowest coordinate rms from equivalent Cαs of ROP dimer is 3.65 Å. Thus, for two simple helical proteins and a small α/β protein, the ability to predict protein structure from sequence has been demonstrated. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Discerning the interactions between initiator protein and the origin of replication should provide insights into the mechanism of DNA replication initiation. In the gamma origin of plasmid R6K, the Rep protein, pi, is distinctive in that it can bind the seven 22-bp iterons in two forms; pi monomers activate replication, whereas pi dimers act as inhibitors. In this work, we used wild type and variants of the pi protein with altered monomer/dimer ratios to study iteron/pi interactions. High resolution contact mapping was conducted using multiple techniques (missing base contact probing, methylation protection, base modification, and hydroxyl radical footprinting), and the electrophoretic separation of nucleoprotein complexes allowed us to discriminate between contact patterns produced by pi monomers and dimers. We also isolated iteron mutants that affected the binding of pi monomers (only) or both monomers and dimers. The mutational studies and footprinting analyses revealed that, when binding DNA, pi monomers interact with nucleotides spanning the entire length of the iteron. In contrast, pi dimers interact with only the left half of the iteron; however, the retained interactions are strikingly similar to those seen with monomers. These results support a model in which Rep protein dimerization disturbs one of two DNA binding domains important for monomer/iteron interaction; the dimer/iteron interaction utilizes only one DNA binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号