首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radio‐telemetry was used to investigate movement of large, mainly mature male (80%) Atlantic salmon Salmo salar parr in Stoney River, Newfoundland during early winter (November; water temperature 6·0 ± 0·1° C) and mid‐winter (January to February; 0·8 ± 0·0° C). Site fidelity of parr in early winter was low. Parr moved between fluvial and lacustrine habitats and were active throughout the diel cycle. Parr caught in fluvial habitats in mid‐winter were smaller and younger than parr caught in early winter. Site fidelity of parr in mid‐winter was greater than in early winter. Parr in mid‐winter moved between fluvial and adjacent small lacustrine habitats, but avoided a larger pond inhabited by large piscivorous fishes. Instream movement rates in mid‐winter were lower than in early winter and occurred primarily during hours of darkness (dawn, dusk and night). Fluvial habitats were relatively stable and ice‐free throughout the study periods. These results suggested that large Atlantic salmon parr utilize a variety of habitats and remain active throughout the winter, even under stable environmental conditions.  相似文献   

2.
Winter habitat use and activity patterns of juvenile Atlantic salmon and brown trout were analysed in a comparative study between Passive Integrated Transponder (PIT) technology, radio telemetry and underwater observation by snorkelling. Two study periods were conducted in Stoney River, Newfoundland, Canada. During Study period I, 49 juvenile Atlantic salmon (fork length: 11.0–18.0 cm) and 7 brown trout (11.0–17.3 cm) were tagged with PIT tags and/or radio transmitters in late winter of 2004. During Study period II, 18 juvenile Atlantic salmon (fork length: 12.0–18.4 cm) and 23 brown trout (10.9–20.8 cm) were tagged and tracked twice a day at 10:00 h and 22:00 h on five consecutive days in late winter of 2005. From the 56 fish released during Study period I, on average 19.6 ± 6.0% of the PIT tagged fish and 99.3 ± 2.2% of the radio tagged fish were relocated during any given survey. Over the Study period II, 39% of fish emigrated from the study site. PIT technology had an efficiency of 39.2 ± 14.1% to detect the remaining fish. In contrast, radio telemetry relocated on average 96.9 ± 6.5% of the tagged fish whereas by snorkelling on average only 4.1 ± 5.6% of the tagged fish were observed. PIT telemetry may however be more efficient in smaller, less heterogeneous streams. The advantage of PIT technology over radio telemetry is clearly that it is relatively less costly permitting higher numbers of individuals to be tagged and there is no limit in the operational life of the transponder. In winter, juvenile salmonids preferred low flow velocity and no preferences were observed for any specific water depth over the range of available water depths. Fish selected preferentially boulder habitat over other substrates in the environment. Habitat utilisation did not differ between day and night. The use of winter preference indices may be important for future habitat modelling.  相似文献   

3.
Hiscock  M. J.  Scruton  D. A.  Brown  J. A.  Pennell  C. J. 《Hydrobiologia》2002,483(1-3):161-165
Radiotelemetry was used to investigate the diel activity pattern of juvenile Atlantic salmon (Salmo salar) in early and late winter. Fish were active throughout the diel cycle. However, there was significantly less daytime than nighttime movement and movement declined significantly with increasing fork length. Maximizing winter growth rate, through an overall increase in foraging activity, may reduce the risk of starvation in smaller fish. The results of the present study provide evidence that the activity patterns of juvenile salmonids are quite complex and support the suggestion that individual variation in activity patterns are, at least, partially driven by body size.  相似文献   

4.
The length, weight and stomach fullness index of salmon parr from a lake were higher than in a fluvial habitat on the same river in northern Finland, but no differences in diet composition were detected between the habitats in August. The most important food items of the parr in both habitats were insect pupae and adults. Some lake parr also fed on fish.  相似文献   

5.
Occurrence of Atlantic salmon parr in redds at spawning time   总被引:1,自引:0,他引:1  
Several Atlantic salmon parr of different sizes were found alive in salmon redds under a 10–30 cm layer of stones at spawning time. Parr, both mature and immature, remain inactive in redds during daylight but show nocturnal activity.  相似文献   

6.
To elucidate possible mechanisms behind the endocrine control of parr–smolt transformation, the daily plasma profiles in thyroid hormones (TH; free thyroxine (FT4), total thyroxine (TT4), and total 3,5,3′-triiodothyronine (TT3)), growth hormone (GH) and cortisol were studied in Atlantic salmon parr and smolts under simulated-natural winter (8 L:16D) and spring (16.5 L:7.5D) photoperiods, respectively. Overall, TT4, TT3 and GH levels were higher in smolts than in parr, whereas FT4 levels fluctuated within the same range in parr and smolts. Significant diurnal changes in plasma TH were present in parr. Both FT4 and TT4 levels increased during the photophase and decreased during the scotophase, while TT3 levels followed an inverse pattern. Growth hormone showed no significant changes in parr. Changes in FT4, TT4, GH, and cortisol, but not TT3, levels, were observed in smolts with peak levels during both the photophase and scotophase for FT4, TT4 and GH. Plasma cortisol was not assayed in parr but in smolts the peaks were associated with dusk and dawn. In addition to the general increases in TH, GH and cortisol, the distinct endocrine differences in nighttime levels between parr in the winter and smolts in the spring suggest different interactions between TH, GH, cortisol and melatonin at these different time points. These spring scotophase endocrine profiles may represent synergistic hormone interactions that promote smolt development, similar to the synergistic endocrine interactions shown to accelerate anuran metamorphosis. The variations in these diurnal rhythms between parr and smolts may represent part of the endocrine mechanism for the translation of seasonal information during salmon smoltification.  相似文献   

7.
8.
The movements of 24 hatchery-reared Atlantic salmon Salmo salar smolts, with miniature acoustic transmitters (pingers) implanted surgically, were determined after release in the coastal waters of Passamaquoddy Bay (mean tide range 6 m), New Brunswick, Canada, to describe the first stages of seaward migration. Automated pinger detection at fixed sites, and pinger location and tracking by boat were used. Post-smolts left the release area rapidly, and the majority moved to open waters of the bay within several tidal cycles. Initially, post-smolts moved with a seaward orientation on ebb tides and held positions on flood tides. Their movements into open waters were diurnal, and the timing corresponded with the state of the tide during which they moved through a narrow channel. Post-smolts moved preferentially through this passageway with the aid of the tidal stream. Successful movements out through the channel occurred during ebb tides and any movements back in were during flood tides. Ground speed of fish moving through the channel was 4·2 body lengths s−1 and faster than the tidal stream velocities in the channel. The relative velocity of fish swimming through the channel was 2 body lengths s−1. Post-smolt movement was indicative of active, directed swimming with a reliance on ebb-tide transport for migration through a coastal area with strong tidal currents. Some post-smolts moved seaward directly with no apparent period of acclimation for the transfer to the marine environment, whereas others delayed their departure. These differences in behaviour were probably related to asynchrony in smolting when fish were released.  相似文献   

9.
We recorded the observed and actual swimming speeds of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system, and initiated studies on the orientation mechanisms of the post-smolts. We tracked Atlantic salmon and sea trout with acoustic transmitters for up to 14 h after release. The actual swimming speed and direction of a fish relative to the ground is the vector sum of the observed movements of the fish and the movements of the water. We determined actual swimming speeds and directions of the post-smolts, which reflect their real swimming capacities and orientation, by corrections for the speed and direction of the water current. The post-smolts were actively swimming. The observed direction of movement was dependent on the actual movement of the fish and not the water current. Water currents were not systematically used as an orientation cue either in Atlantic salmon or sea trout, as the actual movements were random compared to the direction of the water current. The actual movement of sea trout were in all compass directions, with no systematic pattern. The Atlantic salmon also moved in all compass directions, but with the lowest frequency of actual movement towards the fjord.  相似文献   

10.
The behaviour of wild (n = 43, mean LT = 152 mm) and hatchery-reared (n = 71, mean LT = 198 mm) Atlantic salmon and wild anadromous brown trout (n = 34, mean LT = 171 mm) post-smolts with acoustic transmitters was compared in a Norwegian fjord system. There was no difference in survival between wild and hatchery reared salmon from release in the river mouth to passing receiver sites 9.5 km and 37.0 km from the release site. Mortality approached 65% during the first 37 km of the marine migration for both groups. There was no difference between wild and hatchery-reared salmon either in time from release to first recording at 9.5 km (mean 135 and 80 h), or in the rate of movement through the fjord (mean 0.53 and 0.56 bl s−1). Hatchery-reared salmon reached the 37 km site sooner after release than the wild salmon (mean 168 and 450 h), but rate of movement in terms of body lengths per second did not differ (mean 0.56 and 0.77 bl s−1). The brown trout remained a longer period in the inner part of the fjord system, with much slower rates of movement during the first 9.5 km (mean 0.06 bl s−1).  相似文献   

11.
We review factors affecting the within-river spawning migration of Atlantic salmon. With populations declining across the entire distribution range, it is important that spawners survive in the last phase of the spawning migration. Knowledge on the factors affecting migration is essential for the protection of populations, and to increase the success of reintroduction programmes. A number of studies have documented that the upstream migration may be delayed for many weeks at man-made obstacles such as power station outlets, residual flow stretches, dams, weirs and fishways. The fish may also be delayed at natural migration barriers. Often, the magnitude of delay is not predictable; fish may be considerably delayed at barriers that appear to humans to be easily passable, or they may quickly pass barriers that appear difficult. Stressful events like catch-and-release angling may affect upstream migration. Impacts of human activities may also cause altered migration patterns, affect the within-river distribution of the spawning population, and severe barriers may result in displacement of the spawning population to other rivers. Factors documented to affect within-river migration include previous experience, water discharge, water temperature, water velocity, required jump heights, fish size, fish acclimatisation, light, water quality/pollution, time of the season, and catch and handling stress. How each of these factors affects the upstream migration is to a varying extent understood; however, the effects may differ among different river sections and sites. There are likely a number of additional important factors, and the relationship between different factors is complex. The understanding of general mechanisms stimulating fish within-river migration are still lacking, and it cannot be reliably predicted under which conditions a fish will pass a given migration barrier or which conditions are needed to stimulate migration at different sites. The strong focus on the effects of water discharge in past work may have hampered consideration of other factors. Exploration of the influence of these other factors in future studies could improve our understanding of what controls the upstream migration.  相似文献   

12.
A hydro power plant constructed around a waterfall on a coastal spate river, used the fall as a natural fish pass and applied a previous telemetry study on local Atlantic salmon Salmo salar to determine the abstraction conditions for the site. The current study used the same telemetry approach to monitor the efficacy of S. salar passage and to compare migratory behaviour at the waterfall pre and post the hydro development. The probability of S. salar successfully crossing the waterfall was higher post-hydro when 80% of tagged fish successfully crossed in comparison to the pristine pre-hydro period when 44% of tagged fish ascended. The flow range used by tagged S. salar to cross the waterfall ranged from 2.49−7.87 m3 s−1 in the pre-hydro period but broadened to 1.32−12.91 m3 s−1 during the post-hydro period. This was principally due to the hydro diverting water away from the waterfall during spate conditions, damping the flow across the barrier and facilitating upstream migration within a more suitable discharge range. During 2017–2018 implementation of the hydro-operation protocol elongated the duration of the migratory window for successful upstream migration by 36–128%. A strong diurnal pattern was observed for movements across the Salmon Leap waterfall during both the pre-hydro and post-hydro monitoring periods with most tagged S. salar crossing the complex obstacle in daylight.  相似文献   

13.
The year-round thermal habitat at sea for adult Atlantic salmon Salmo salar (n = 49) from northern Norway was investigated using archival tags over a 10 year study period. During their ocean feeding migration, the fish spent 90% of the time in waters with temperatures from 1.6–8.4°C. Daily mean temperatures ranged from −0.5 to 12.9°C, with daily temperature variation up to 9.6°C. Fish experienced the coldest water during winter (November–March) and the greatest thermal range during the first summer at sea (July–August). Trends in sea-surface temperatures influenced the thermal habitat of salmon during late summer and autumn (August–October), with fish experiencing warmer temperatures in warmer years. This pattern was absent during winter (November–March), when daily mean temperatures ranged from 3.4–5.0°C, in both colder and warmer years. The observations of a constant thermal habitat during winter in both warmer and colder years, may suggest that the ocean distribution of salmon is flexible and that individual migration routes could shift as a response to spatiotemporal alterations of favourable prey fields and ocean temperatures.  相似文献   

14.

Background

An Atlantic salmon (Salmo salar) C-type lectin (SSL) binds to mannose and related sugars as well as to the surface of Aeromonas salmonicida. To characterize this lectin as a pathogen recognition receptor in salmon, aspects of its interaction with molecules and with intact pathogens were investigated.

Methods

SSL was isolated using whole-yeast-affinity and mannan-affinity chromatography. The binding of SSL to the two major surface molecules of A. salmonicida, lipopolysaccharide (LPS) and A-layer protein was investigated by western blotting and enzyme-linked immunosorbent assays. Microbial binding specificity of SSL was examined by whole cell binding assays using a range of species. Carbohydrate ligand specificity of SSL was examined using glycan array analysis and frontal affinity chromatography.

Results

SSL showed binding to bacteria and yeast including, Pseudomonas fluorescens, A. salmonicida, A. hydrophila, Pichia pastoris, and Saccharomyces cerevisiae, but there was no detectable binding to Yersinia ruckeri. In antimicrobial assays, SSL showed no activity against Escherichia coli, Bacillus subtilis, S. cerevisiae, or A. salmonicida, but it was found to agglutinate E. coli. The major surface molecule of A. salmonicida recognized by SSL was shown to be LPS and not the A-layer protein. LPS binding was mannose-inhibitable. Glycans containing N-acetylglucosamine were shown to be predominant ligands.

Conclusion

SSL has a distinct ligand preference while allowing recognition of a wide variety of related carbohydrate structures.

General Significance

SSL is likely to function as a wide-spectrum pattern recognition protein.  相似文献   

15.
Type I (alpha/beta) interferons (IFNs) are a family of cytokines that stimulate the expression of numerous proteins that mediate an antiviral state in uninfected cells. Two Atlantic salmon (Salmo salar) IFN-alpha (SasaIFN-alpha1 & 2) genes have previously been cloned and both were found to contain a putative N-linked glycosylation site. Recombinant SasaIFN-alpha1 (rSasaIFN-alpha1) produced in eukaryotic systems has repeatedly been shown to confer antiviral properties. However, different IFN-alpha subtypes may exhibit differential antiviral activities and be subject to glycosylation. To evaluate the potential therapeutic impact of a rSasaIFN-alpha, the mature form of the SasaIFN-alpha2 protein was produced in a high-level Escherichia coli expression system. Expression of the rSasaIFN-alpha2 was detected by SDS-PAGE and Western blot, and its identity was confirmed by mass spectrometry. In the homologous Chinook salmon embryonic (CHSE-214) cell line, the rSasaIFN-alpha2 incited early expression of the IFN-induced Mx protein and exhibited high antiviral activity of about 2.8 x 10(6) U mg(-1) against infectious pancreatic necrosis virus (IPNV). Conversely, antiviral protection by rSasaIFN-alpha2 was not observed in a heterologous Japanese flounder embryo (HINAE) cell line. Hence, a biologically active form of rSasaIFN-alpha2 was successfully produced using a glycosylation-deficient prokaryotic system and purified to homogeneity, suggesting that glycosylation is not required for its antiviral activity.  相似文献   

16.
Tracking 47 post-spawned adult Atlantic salmon Salmo salar L. in a hydropower-regulated river through autumn, winter and spring revealed that winter survival was 56% and 75% in two study years, respectively, with higher mortality of males than females (50% vs. 33% and 100% vs. 13%, respectively). Some kelts (n = 7) displayed nondirected movements that were interpreted as a reconditioning period for an average of 9–17 days prior to directed downstream movements indicating the initiation of migration. Survival after the initiation of migration in spring was 83% and 94% to the hydropower dam in the first and second study years, and decreased to 60 and 63%, respectively, after dam passage. There were no further losses in the downriver reach in the second year, with the first year having a cumulative survival estimate of 53% to the river mouth. Kelts approached the dam when the spillway gates were available as a passage option most of the time (64%–75%), but some kelts arrived at the dam or had not yet passed when spillways were closed (n = 6) and the only remaining passage option was restricted to the turbines. However, all but one kelt that must have passed via turbine were successful in reaching the river mouth. Migratory delay presumably due to searching behaviour caused by low water flow was estimated at approximately 6 days as migration rates were significantly slower in the reservoir (median ± s.e. 8.5 ± 2.5 km day−1) than up- (29.7 ± 5.0 km day−1) or downriver (22.1 ± 3.1 km day−1). The proportion of time (median 30%) that kelts spent swimming upstream (searching behaviour) in the reservoir was a significant variable for migration success.  相似文献   

17.
18.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

19.
20.
Temperature is important to fish in determining their geographic distribution. For cool- and cold-water fish, thermal regimes are especially critical at the southern end of a species’ range. Although temperature is an easy variable to measure, biological interpretation is difficult. Thus, how to determine what temperatures are meaningful to fish in the field is a challenge. Herein, we used the Connecticut River as a model system and Atlantic salmon (Salmo salar) as a model species with which to assess the effects of summer temperatures on the density of age 0 parr. Specifically, we asked: (1) What are the spatial and temporal temperature patterns in the Connecticut River during summer? (2) What metrics might detect effects of high temperatures? and (3) How is temperature variability related to density of Atlantic salmon during their first summer? Although the most southern site was the warmest, some northern sites were also warm, and some southern sites were moderately cool. This suggests localized, within basin variation in temperature. Daily and hourly means showed extreme values not apparent in the seasonal means. We observed significant relationships between age 0 parr density and days at potentially stressful, warm temperatures (≥23°C). Based on these results, we propose that useful field reference points need to incorporate the synergistic effect of other stressors that fish encounter in the field as well as the complexity associated with cycling temperatures and thermal refuges. Understanding the effects of temperature may aid conservation efforts for Atlantic salmon in the Connecticut River and other North Atlantic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号