首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All secreted proteins in Escherichia coli must be maintained in an export-competent state before translocation across the inner membrane. In the case of the Sec pathway, this function is carried out by the dedicated SecB chaperone and the general chaperones DnaK-DnaJ-GrpE and GroEL-GroES, whose job collectively is to render substrate proteins partially or entirely unfolded before engagement of the translocon. To determine whether these or other general molecular chaperones are similarly involved in the translocation of folded proteins through the twin-arginine translocation (Tat) system, we screened a collection of E. coli mutant strains for their ability to transport a green fluorescent protein (GFP) reporter through the Tat pathway. We found that the molecular chaperone DnaK was essential for cytoplasmic stability of GFP bearing an N-terminal Tat signal peptide, as well as for numerous other recombinantly expressed endogenous and heterologous Tat substrates. Interestingly, the stability conferred by DnaK did not require a fully functional Tat signal as substrates bearing translocation defective twin lysine substitutions in the consensus Tat motif were equally unstable in the absence of DnaK. These findings were corroborated by crosslinking experiments that revealed an in vivo association between DnaK and a truncated version of the Tat substrate trimethylamine N-oxide reductase (TorA502) bearing an RR or a KK signal peptide. Since TorA502 lacks nine molybdo-cofactor ligands essential for cofactor attachment, the involvement of DnaK is apparently independent of cofactor acquisition. Finally, we show that the stabilizing effects of DnaK can be exploited to increase the expression and translocation of Tat substrates under conditions where the substrate production level exceeds the capacity of the Tat translocase. This latter observation is expected to have important consequences for the use of the Tat system in biotechnology applications where high levels of periplasmic expression are desirable.  相似文献   

2.
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.  相似文献   

3.
A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or 'C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.  相似文献   

4.
Yahr TL  Wickner WT 《The EMBO journal》2001,20(10):2472-2479
The Tat (twin-arginine translocation) pathway is a Sec-independent mechanism for translocating folded preproteins across or into the inner membrane of Escherichia coli. To study Tat translocation, we sought an in vitro translocation assay using purified inner membrane vesicles and in vitro synthesized substrate protein. While membrane vesicles derived from wild-type cells translocate the Sec-dependent substrate proOmpA, translocation of a Tat-dependent substrate, SufI, was not detected. We established that in vivo overexpression of SufI can saturate the Tat translocase, and that simultaneous overexpression of TatA, B and C relieves this SufI saturation. Using membrane vesicles derived from cells overexpressing TatABC, in vitro translocation of SufI was detected. Like translocation in vivo, translocation of SufI in vitro requires TatABC, an intact membrane potential and the twin-arginine targeting motif within the signal peptide of SUFI: In contrast to Sec translocase, we find that Tat translocase does not require ATP. The development of an in vitro translocation assay is a prerequisite for further biochemical investigations of the mechanism of translocation, substrate recognition and translocase structure.  相似文献   

5.
The Escherichia coli Tat protein export pathway transports folded proteins synthesized with N-terminal twin-arginine signal peptides. Twin-arginine signal sequences contain a conserved SRRxFLK "twin-arginine" amino acid sequence motif which is required for protein export by the Tat pathway. The E. coli trimethylamine N-oxide reductase (TorA) is a Tat-dependent periplasmic molybdoenzyme that facilitates anaerobic respiration with trimethylamine N-oxide as terminal electron acceptor. Here, we describe mutant strains constructed with modified TorA twin-arginine signal peptides. Substitution of the second arginine residue of the TorA signal peptide twin-arginine motif with either lysine or aspartate, or the simultaneous substitution of both arginines with lysine residues, completely abolished export. In each case, the now cytoplasmically localised TorA retained full enzymatic activity with the artificial electron donor benzyl viologen. However, the mutant strains were incapable of anaerobic growth with trimethylamine N-oxide and the non-fermentable carbon-source glycerol. The growth phenotype of the mutant strains was exploited in a genetic screen with the aim of identifying second-site suppressor mutations that allowed export of the modified TorA precursors.  相似文献   

6.
The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.  相似文献   

7.
This study demonstrates a functional twin-arginine (Tat) translocation pathway present in the tsetse fly symbiont Sodalis glossinidius and its potential to export active heterologous proteins to the periplasm. Functionality was demonstrated using green fluorescent protein (GFP) fused to the Tat signal peptide of Escherichia coli trimethylamine N-oxide reductase (TorA).  相似文献   

8.
Overexpression of either heterologous or homologous proteins that are routed to the periplasm via the twin-arginine translocation (Tat) pathway results in a block of export and concomitant accumulation of the respective protein precursor in the cytoplasm. Screening of a plasmid-encoded genomic library for mutants that confer enhanced export of a TorA signal sequence (ssTorA)-GFP-SsrA fusion protein, and thus result in higher cell fluorescence, yielded the pspA gene encoding phage shock protein A. Coexpression of pspA relieved the secretion block observed with ssTorA-GFP-SsrA or upon overexpression of the native Tat proteins SufI and CueO. A similar effect was observed with the Synechocystis sp. strain PCC6803 PspA homologue, VIPP1, indicating that the role of PspA in Tat export may be phylogenetically conserved. Mutations in Tat components that completely abolish export result in a marked induction of PspA protein synthesis, consistent with its proposed role in enhancing protein translocation via Tat.  相似文献   

9.
TorD is the private chaperone of TorA, a periplasmic respiratory molybdoenzyme of Escherichia coli. In this study, it is demonstrated that TorD is required to maintain the integrity of the twin-arginine signal sequence of the cytoplasmic TorA precursors. In the absence of TorD, 35 out of the 39 amino acid residues of the signal peptide were lost and the proteolysis of the N-terminal extremity of TorA precursors was not prevented by the molybdenum cofactor insertion. We thus propose that one of the main roles of TorD is to protect the TorA signal peptide to allow translocation of the enzyme by the TAT system.  相似文献   

10.
The twin-arginine translocation (Tat) apparatus is a protein targeting system found in the cytoplasmic membranes of many prokaryotes. Substrate proteins of the Tat pathway are synthesised with signal peptides bearing SRRxFLK ‘twin-arginine’ amino acid motifs. All Tat signal peptides have a common tripartite structure comprising a polar N-terminal region, followed by a hydrophobic region of variable length and a polar C-terminal region. In Escherichia coli, Tat signal peptides are proteolytically cleaved after translocation. The signal peptide C-terminal regions contain conserved AxA motifs, which are possible recognition sequences for leader peptidase I (LepB). In this work, the role of LepB in Tat signal peptide processing was addressed directly. Deliberate repression of lepB expression prevented processing of all Tat substrates tested, including SufI, AmiC, and a TorA-23K reporter protein. In addition, electron microscopy revealed gross defects in cell architecture and membrane integrity following depletion of cellular LepB protein levels.  相似文献   

11.
Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA) and TorD (specific for trimethylamine N-oxide reductase, TorA). Green fluorescent protein (GFP) was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function.  相似文献   

12.
The twin-arginine translocation (TAT) system secretes fully folded proteins that contain a twin-arginine motif within their signal sequence across the cytoplasmic membrane in bacteria. Using a green fluorescent protein fused with a TAT signal sequence, we demonstrated that Mycobacterium smegmatis contains a TAT system. By inactivating individual genes, we showed that three genes (tatA, tatB, and tatC) are required for a functional TAT system in M. smegmatis. The tat mutants exhibited a decreased growth rate and altered colony morphology compared to the parent strain. Comparison of the secreted proteins of the deltatatC and parent strain by two-dimensional polyacrylamide gel electrophoresis revealed an alteration in the secretion of at least five proteins, and one of the major TAT-dependent secreted proteins was identified as beta-lactamase (BlaS). The genome of M. smegmatis was analyzed with the TATFIND program, and 49 putative TAT substrates were identified, including the succinate transporter DctP. Because disruption of the TAT secretion system has a direct effect on the physiology of M. smegmatis and homologs of the TAT proteins are also present in the genome of Mycobacterium tuberculosis, the TAT secretion system or its substrates may be good candidates for drug or vaccine development.  相似文献   

13.
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.  相似文献   

14.
The twin-arginine translocation (Tat) system mediates the transport of proteins across the bacterial plasma membrane and chloroplast thylakoid membrane. Operating in parallel with Sec-type systems in these membranes, the Tat system is completely different in both structural and mechanistic terms, and is uniquely able to catalyze the translocation of fully folded proteins across coupled membranes. TatC is an essential, multispanning component that has been proposed to form part of the binding site for substrate precursor proteins. In this study we have tested the importance of conserved residues on the periplasmic and cytoplasmic face of the Escherichia coli protein. We find that many of the mutations on the cytoplasmic face have little or no effect. However, substitution at several positions in the extreme N-terminal cytoplasmic region or the predicted first cytoplasmic loop lead to a significant or complete loss of Tat-dependent export. The mutated strains are unable to grow anaerobically on trimethylamine N-oxide minimal media and are unable to export trimethylamine-N-oxide reductase (TorA). The same mutants are completely unable to export a chimeric protein, comprising the TorA signal peptide linked to green fluorescent protein, indicating that translocation is blocked rather than cofactor insertion into the TorA mature protein. The data point to two essential cytoplasmic domains on the TatC protein that are essential for export.  相似文献   

15.
The twin-arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane, including FeS proteins that receive their cofactors in the cytoplasm. We have studied two Escherichia coli Tat substrates, NrfC and NapG, to examine how, or whether, the system exports only correctly folded and assembled FeS proteins. With NrfC, substitutions in even one of four predicted FeS centres completely block export, indicating an effective proofreading activity. The FeS mutants are rapidly degraded but only if they interact with the Tat translocon; they are stable in a tat deletion strain and equally stable in wild-type cells if the signal peptide twin-arginine motif is removed to block targeting. Basically similar results are obtained with NapG. The Tat apparatus thus proofreads these substrates and directly initiates the turnover of rejected molecules. Turnover of mutated FeS substrates is completely dependent on the TatA/E subunits that are believed to be involved in the late stages of translocation, and we propose that partial translocation triggers substrate turnover within an integrated quality control system for FeS proteins.  相似文献   

16.
The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Substrates are targeted to the Tat pathway by signal peptides containing a pair of consecutive arginine residues. The membrane proteins TatA, TatB and TatC are the essential components of this pathway in Escherichia coli. The complexes that these proteins form at native levels of expression have been investigated by the use of affinity tag-coding sequences fused to chromosomal tat genes. Distinct TatA and TatBC complexes were identified using size-exclusion chromatography and shown to have apparent molecular masses of approximately 700 and 500 kDa, respectively. Following in vivo expression, the Tat substrate protein SufI was found to copurify with the TatBC, but not the TatA, complex. This binding required the SufI signal peptide. Substitution of the twin-arginine residues in the SufI signal peptide by either twin lysine or twin alanine residues abolished export. However, both variant SufI proteins still copurified with the TatBC complex. These data show that the twin-arginine residues of the Tat consensus motif are not essential for binding of precursor to the TatBC complex but are required for the successful entry of the precursor into the transport cycle. The effect on substrate binding of single amino acid substitutions in TatC that affect Tat transport were studied using TatC variants Phe94Ala, Glu103Ala, Glu103Arg and Asp211Ala. Only variant Glu103Arg showed reduced copurification of SufI with TatBC. The transport defects associated with the other TatC variants do not, therefore, arise from an inability to bind substrate proteins.  相似文献   

17.
The recently discovered bacterial twin-arginine translocation (Tat) pathway was investigated in Streptomyces lividans, a gram-positive organism with a high secretion capacity. The presence of one tatC and two hcf106 homologs in the S. lividans genome together with the several precursor proteins with a twin-arginine motif in their signal peptide suggested the presence of the twin-arginine translocation pathway in the S. lividans secretome. To demonstrate its functionality, a tatC deletion mutant was constructed. This mutation impaired the translocation of the Streptomyces antibioticus tyrosinase, a protein that forms a complex with its transactivator protein before export. Also the chimeric construct pre-TorA-23K, known to be exclusively secreted via the Tat pathway in Escherichia coli, could be translocated in wild-type S. lividans but not in the tatC mutant. In contrast, the secretion of the Sec-dependent S. lividans subtilisin inhibitor was not affected. This study therefore demonstrates that also in general in Streptomyces spp. the Tat pathway is functional. Moreover, this Tat pathway can translocate folded proteins, and the E. coli TorA signal peptide can direct Tat-dependent transport in S. lividans.  相似文献   

18.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

19.
E Bogsch  S Brink    C Robinson 《The EMBO journal》1997,16(13):3851-3859
Cleavable N-terminal targeting signals direct the translocation of lumenal proteins across the chloroplast thylakoid membrane by either a Sec-type or delta pH-driven protein translocase. The targeting signals specify choice of translocation pathway, yet all resemble typical bacterial 'signal' peptides in possessing a charged N-terminus (N-domain), hydrophobic core region (H-domain) and more polar C-terminal region (C-domain). We have previously shown that a twin-arginine motif in the N-domain is essential for targeting by the delta pH-dependent pathway, but it has remained unclear why targeting signals for this system (transfer peptides) are not recognized by the Sec apparatus. We show here that the conserved charge distribution around the H-domain in the 23K transfer peptide (twin-Arg in the N-domain, Lys in the C-domain) constitutes a 'Sec-avoidance' signal. The C-domain Lys, while not important for delta pH-dependent targeting, is the only barrier to Sec-dependent translocation; its removal generates an apparently perfect signal peptide. Conversely, insertion of twin-Arg into the N-domain of a Sec substrate has little effect, as has insertion of a C-domain Lys, but the combined substitutions almost totally block transport. We also show that the 23K mature protein is incapable of being targeted by the Sec pathway, and it is proposed that the role of the Sec-avoidance motif in the transfer peptide is to prevent futile interactions with the Sec apparatus.  相似文献   

20.
The bacterial twin-arginine translocation (Tat) pathway has been recently described for PhoD of Bacillus subtilis, a phosphodiesterase containing a twin-arginine signal peptide. The expression of phoD is co-regulated with the expression of tatA(d) and tatC(d) genes localized downstream of phoD. To characterize the specificity of PhoD transport further, translocation of PhoD was investigated in Escherichia coli. By using gene fusions, we analyzed the particular role of the signal peptide and the mature region of PhoD in canalizing the transport route. A hybrid protein consisting of the signal peptide of beta-lactamase and mature PhoD was transported in a Sec-dependent manner indicating that the mature part of PhoD does not contain information canalizing the selected translocation route. Pre-PhoD, as well as a fusion protein consisting of the signal peptide of PhoD (SP(PhoD)) and beta-galactosidase (LacZ), remained cytosolic in the E. coli. Thus, SP(PhoD) is not recognized by E. coli transport systems. Co-expression of B. subtilis tatA(d)/C(d) genes resulted in the processing of SP(PhoD)-LacZ and periplasmic localization of LacZ illustrating a close substrate specificity of the TatA(d)/C(d) transport system. While blockage of the Sec-dependent transport did not affect the localization of SP(PhoD)-LacZ, translocation and processing was dependent on the pH gradient of the cytosolic membrane. Thus, the minimal requirement of a functional Tat-dependent protein translocation system consists of a twin-arginine signal peptide-containing Tat substrate, its specific TatA/C proteins, and the pH gradient across the cytosolic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号