首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used lipid mixing, contents mixing and contents-leakage assays to characterize the divalent cation-mediated interactions of vesicles composed of various headgroup-modified analogues of phosphatidylethanolamine, PE (N- and C-2-alkylated derivatives, and analogues with increased separations of the phosphoryl and amino groups) together with a low mole percentage of phosphatidylserine (PS). Vesicles containing different structural analogues of PE exhibit marked differences, both in the threshold divalent cation concentrations that are required to initiate vesicle-vesicle interactions and in the rates of contents mixing and leakage observed at suprathresholds divalent cation concentrations. The efficiencies of divalent cation-promoted contents leakage, and to a slightly lesser extent those of contents mixing, for PS/PE (analogue) vesicles show a marked inverse correlation with the lamellar-to-hexagonal II transition temperature (TH) of the PE (analogue) component. However, the destabilization kinetics for such vesicles show no abrupt changes over the temperature range around the equilibrium TH value measured for the vesicle lipids. Vesicles combining PS with different PE analogues exhibit divalent cation thresholds for aggregation that are not correlated with the TH values of the PE (analogue) components but appear instead to be correlated with the equilibrium interbilayer separations measured in multilamellar dispersions of these species. We have identified headgroup-modified analogues of PE that can be used to prepare vesicles that fuse more rapidly under a given set of conditions, or that show a bette ratio of fusion-to-contents-leakage rates, than do PE-containing vesicles. These results may be useful both for understanding better the bases for the high fusion-supporting ability of PE and for the preparation of lipid vesicles 'tailored' for particular practical applications.  相似文献   

2.
Docosahexaenoic acid (DHA), the longest and most unsaturated fatty acid commonly found in biological membranes, is known to affect various membrane properties. In a variety of cell membranes, DHA is primarily incorporated in phosphatidylethanolamines, where its function remains poorly understood. In order to understand the role of DHA in influencing membrane structure, we utilize (31)P NMR spectroscopy to study the phase behavior of 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE) in comparison to 1-palmitoyl-2-oleoyl-sn-glycerophosphoethanolamine (POPE) from 20 to 50 degrees C. Spectra of SDPE phospholipids show the formation of inverted hexagonal phase (H(II)) from 20 to 50 degrees C; in contrast, POPE mutilamellar dispersions exist in a lamellar liquid-crystalline phase (L(alpha)) at the same temperatures. The ability of SDPE to adopt nonbilayer phases at a physiological temperature may indicate its role in imparting negative curvature stress upon the membrane and may affect local molecular organization including the formation of lipid microdomains within biological membranes.  相似文献   

3.
Correlation between lipid plane curvature and lipid chain order.   总被引:1,自引:1,他引:0       下载免费PDF全文
The 1-palmitoyl-2-oleoyl-phosphatidylethanolamine: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE:POPC) system has been investigated by measuring, in the inverted hexagonal (HII) phase, the intercylinder spacings (using x-ray diffraction) and orientational order of the acyl chains (using 2H nuclear magnetic resonance). The presence of 20 wt% dodecane leads to the formation of a HII phase for the composition range from 0 to 39 mol% of POPC in POPE, as ascertained by x-ray diffraction and 2H nuclear magnetic resonance. The addition of the alkane induces a small decrease in chain order, consistent with less stretched chains. An increase in temperature or in POPE proportion leads to a reduction in the intercylinder spacing, primarily due to a decrease in the water core radius. A temperature increase also leads to a reduction in the orientational order of the lipid acyl chains, whereas the POPE proportion has little effect on chain order. A correlation is proposed to relate the radius of curvature of the cylinders in the inverted hexagonal phase to the chain order of the lipids adopting the HII phase. A simple geometrical model is proposed, taking into account the area occupied by the polar headgroup at the interface and the orientational order of the acyl chains reflecting the contribution of the apolar core. From these parameters, intercylinder spacings are calculated that agree well with the values determined experimentally by x-ray diffraction, for the variations of both temperature and POPE:POPC proportion. This model suggests that temperature increases the curvature of lipid layers, mainly by increasing the area subtended by the hydrophobic core through chain conformation disorder, whereas POPC content affects primarily the headgroup interface contribution. The frustration of lipid layer curvature is also shown to be reflected in the acyl chain order measured in the L alpha phase, in the absence of dodecane; for a given temperature, increased order is observed when the curling tendencies of the lipid plane are more pronounced.  相似文献   

4.
Polymersome encapsulated hemoglobin: a novel type of oxygen carrier   总被引:1,自引:0,他引:1  
Bovine hemoglobin (Hb) was encapsulated inside polymer vesicles (polymersomes) to form polymersome encapsulated Hb (PEH) dispersions. PEH particles are 100% surface PEGylated with longer PEG chains and possess thicker hydrophobic membranes as compared to conventional liposomes. Polymersomes were self-assembled from poly(butadiene)-poly(ethylene glycol) (PBD-PEO) amphiphilic diblock copolymers with PBD-PEO molecular weights of 22-12.6, 5-2.3, 2.5-1.3, and 1.8-0.9 kDa. The first two diblock copolymers possessed linear hydrophobic PBD blocks, while the later possessed branched PBD blocks. PEH dispersions were extruded through 100 and 200 nm pore radii membranes. The size distribution, Hb encapsulation efficiency, P(50), cooperativity coefficient, and methemoglobin (metHb) level of PEH dispersions were consistent with values required for efficient oxygen delivery in the systemic circulation. The influence of different molecular weight diblock copolymers on the physical properties of PEH dispersions was analyzed. PBD-PEO copolymers with molecular weights of 22-12.6 and 2.5-1.3 kDa completely dissolved in aqueous solution to form polymersomes, while the other two copolymers formed a mixture of solid copolymer precipitates and polymersomes. PEHs self-assembled from 22-12.6 and 2.5-1.3 kDa PBD-PEO copolymers possessed Hb loading capacities greater than PEG-LEHs, PEGylated actin-containing LEHs, and nonmodified LEHs, although their sizes were smaller and their hydrophobic membranes were thicker. The Hb loading capacities of these polymersomes were also higher than lipogel encapsulated hemoglobin particles and nanoscale hydrogel encapsulated hemoglobin particles. PEH dispersions exhibited average radii larger than 50 nm and exhibited oxygen affinities comparable to human erythrocytes. Polymersomes did not induce Hb oxidation. The interaction between Hb and the membrane of 2.5-1.3 kDa PBD-PEO polymersomes improved the monodispersity of these particular PEH dispersions. These results suggest that PEHs could serve as efficient oxygen therapeutics.  相似文献   

5.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

6.
M J Swamy  D Marsh 《Biochemistry》2001,40(49):14869-14877
The interaction of avidin with aqueous dispersions of N-biotinylphosphatidylethanolamines, of acyl chain lengths C(14:0), C(16:0), and C(18:0), was studied by using spin-label electron spin resonance (ESR) spectroscopy, (31)P nuclear magnetic resonance ((31)P NMR) spectroscopy, differential scanning calorimetry, and chemical binding assays. In neutral buffer containing 1 M NaCl, binding of avidin is due to specific interaction with the biotinyl lipid headgroup because avidin presaturated with biotin does not bind. Saturation binding of the protein corresponds to a ratio of 50 lipid molecules per tetrameric avidin. Phospholipid probes spin-labeled at various positions between C-4 and C-14 in the sn-2 chain were used to characterize the effects of avidin binding on the lipid chain dynamics. In the fluid phase, protein binding results in a decrease of chain mobility at all positions of labeling while the flexibility gradient characteristic of a liquid-crystalline lipid phase is maintained. There is no evidence from the spin-label ESR spectra for penetration of the protein into the hydrophobic interior of the membrane. At temperatures corresponding to the gel phase, the lipid chain mobility increases on binding protein. The near constancy in mobility found with chain position, however, suggests that in the gel phase the lipid chains remain interdigitated upon binding avidin. Binding of increasing amounts of avidin results in a gradual decrease of the lipid chain-melting transition enthalpy with only small change in the transition temperature. At saturation binding, the calorimetric enthalpy is reduced to zero. (31)P NMR spectroscopy indicates that protein binding increases the surface curvature of dispersions of all three biotin lipids. The C(14:0) biotin lipid yields isotropic (31)P NMR spectra in the presence of avidin at all temperatures between 10 and 70 degrees C, in contrast to dispersions of the lipid alone, which give lamellar spectra at low temperature that become isotropic at the chain-melting temperature. In the presence of avidin, the C(16:0) and C(18:0) biotin lipids yield primarily lamellar (31)P NMR spectra at low temperature with a small isotropic component; the intensity of the isotropic component increases with temperature, and the spectra narrow and become totally isotropic at high temperature, in contrast to dispersions of the lipids alone, which give lamellar spectra in the fluid phase. The binding of avidin therefore reduces the cooperativity of the biotin lipid packing, regulates the mobility of the lipid chains, and enhances the surface curvature of the lipid aggregates. These effects may be important for both lateral and transbilayer communication in the membrane.  相似文献   

7.
Bending elasticity is an important property of lipid vesicles, non-lamellar lipid phases and biological membranes. Experimental values of the mean curvature moduli, k(c), of lipid bilayers and of the monolayer leaflets of inverted hexagonal (H(II)) phases of lipids are tabulated here for easy reference. Experimental estimates of the Gaussian curvature modulus, k (c), are also included. Consideration is given to the relation between the bending moduli of bilayers and the constituent monolayer leaflets. Useful mathematical relations involving the bending moduli and spontaneous curvature are summarized.  相似文献   

8.
Recently, evidence for cholesterol and phosphatidylcholine (PC) molecules to adapt superlattice arrangements in fluid lipid bilayers has been presented. Whether superlattice arrangements exist in other biologically relevant lipid membranes, such as phosphatidylethanolamine (PE)/PC, is still speculative. In this study, we have examined the physical properties of fluid 1-palmitoyl-2-oleoyl-PC (POPC) and 1-palmitoyl-2-oleoyl-PE (POPE) binary mixtures as a function of the POPE mole fraction (X(PE)) using fluorescence and Fourier transform infrared spectroscopy. At 30 degrees C, i.e., above the Tm of POPE and POPC, deviations, or dips, as well as local data scattering in the excimer-to-monomer fluorescence intensity ratio of intramolecular excimer forming dipyrenylphosphatidylcholine probe in POPE/POPC mixtures were detected at X(PE) approximately 0.04, 0.11, 0.16, 0.26, 0.33, 0.51, 0.66, 0.75, 0.82, 0.91, and 0.94. The above critical values of X(PE) coincide (within +/-0.03) with the critical mole fractions X(HX,PE) or X(R,PE) predicted by a headgroup superlattice model, which assumes that the lipid headgroups form hexagonal or rectangular superlattice, respectively, in the bilayer. Other spectroscopic data, generalized polarization of Laurdan and infrared carbonyl and phosphate stretching frequency, were also collected. Similar agreements between some of the observed critical values of X(PE) from these data and the X(HX,PE) or X(R,PE) values were also found. However, all techniques yielded critical values of X(PE) (e.g., 0.42 and 0.58) that cannot be explained by the present headgroup superlattice model. The effective cross-sectional area of the PE headgroup is smaller than that of the acyl chains. Hence, the relief of "packing frustration" of PE in the presence of PC (larger headgroup than PE) may be one of the major mechanisms in driving the PE and PC components to superlattice-like lateral distributions in the bilayer. We propose that headgroup superlattices may play a significant role in the regulation of membrane lipid compositions in cells.  相似文献   

9.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

10.
Su Y  Waring AJ  Ruchala P  Hong M 《Biochemistry》2011,50(12):2072-2083
The structural basis for the gram selectivity of two disulfide-bonded β-hairpin antimicrobial peptides (AMPs) is investigated using solid-state nuclear magnetic resonance (NMR) spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both gram-positive and gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains gram-positive activity but is 30-fold less active against gram-negative bacteria. We determined the topological structure and lipid interactions of these two peptides in a lipopolysaccharide (LPS)-rich membrane that mimics the outer membrane of gram-negative bacteria and in the POPE/POPG membrane, which mimics the membrane of gram-positive bacteria. (31)P NMR line shapes indicate that both peptides cause less orientational disorder in the LPS-rich membrane than in the POPE/POPG membrane. (13)C chemical shifts and (13)C-(1)H dipolar couplings show that both peptides maintain their β-hairpin conformation in these membranes and are largely immobilized, but the mutant exhibits noticeable intermediate-time scale motion in the LPS membrane at physiological temperature, suggesting shallow insertion. Indeed, (1)H spin diffusion from lipid chains to the peptides shows that PG-1 fully inserts into the LPS-rich membrane whereas the mutant does not. The (13)C-(31)P distances between the most hydrophobically embedded Arg of PG-1 and the lipid (31)P are significantly longer in the LPS membrane than in the POPE/POPG membrane, indicating that PG-1 does not cause toroidal pore defects in the LPS membrane, in contrast to its behavior in the POPE/POPG membrane. Taken together, these data indicate that PG-1 causes transmembrane pores of the barrel-stave type in the LPS membrane, thus allowing further translocation of the peptide into the inner membrane of gram-negative bacteria to kill the cells. In comparison, the less cationic mutant cannot fully cross the LPS membrane because of weaker electrostatic attractions, thus causing weaker antimicrobial activities. Therefore, strong electrostatic attraction between the peptide and the membrane surface, ensured by having a sufficient number of Arg residues, is essential for potent antimicrobial activities against gram-negative bacteria. The data provide a rational basis for controlling gram selectivity of AMPs by adjusting the charge densities.  相似文献   

11.
Several novel cationic amphiphiles, based on a hydrophobic cholesteryl or dioleoylglyceryl moiety, have been prepared whose hydrophobic and cationic portions are linked by ester bonds to facilitate efficient degradation in animal cells. Dispersions combining such cationic species with phosphatidylethanolamine (PE), certain structural analogues of PE or diacylglycerol can mediate efficient transfer of both nonexchangeable lipid probes and the DNA plasmid pSV2cat into cultured mammalian (CV-1 and 3T3) cells. The abilities of different types of cationic lipid dispersions to mediate transfection of mammalian cells with pSV2cat could not be directly correlated with their abilities to coalesce with other membranes, as assessed by their ability to intermix lipids efficiently with large unilamellar phosphatidylcholine/phosphatidylserine vesicles in the presence or absence of DNA. The cytotoxicities toward CV-1 cells of dispersions combining PE with most of the degradable cationic amphiphiles studied here compare favorably with those reported previously for similar dispersions containing other types of cationic amphiphiles. Fluorescent analogues of two of the diacylglycerol-based cationic amphiphiles examined in this study are shown to be readily degraded after incorporation into CV-1 cells from PE/cationic lipid dispersions.  相似文献   

12.
We have synthesized four 6-thio pseudo glycolipid analogues and assessed how two of them self-assembled on a gold surface. These structures were designed as candidate tethers molecules to anchor bilayer lipid membranes on gold. 6-Deoxy-6-thiogalactose was chosen to anchor the macromolecule to the gold and define an aqueous zone at the gold surface. A long alkane chain (C-12 or C-18) linked to the anomeric position of the sugar residue was chosen to anchor a bilayer lipid membrane. The linkage between the carbohydrate and the hydrophobic chains is either a glycosidic bond or a 1,4-disubstituted triazole formed by copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) of the propargyl glycoside with azido-dodecane and azido-octadecane. We are expecting that the hydrocarbon chains will orient themselves perpendicular to the gold surface and be incorporated into the first leaflet of the bilayer membrane. We have studied self assembled monolayers of the C-12 aglycone analogues on gold using infrared reflection absorption spectroscopy (IRRAS). We compared the results given by the IRRAS experiments to the IR spectra recorded by attenuated total reflection (ATR) spectroscopy on films of the randomly oriented analogues. Our results demonstrate that the C-12 analogues did bind to gold and did orient themselves perpendicular to the gold slide.  相似文献   

13.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

14.
Antibiotics acting on bacterial membranes are receiving increasing attention because of widespread resistance to agents acting on other targets and of potentially improved bactericidal effects. Oritavancin is a amphiphilic derivative of vancomycin showing fast and extensive killing activities against multi-resistant (including vancomycin insusceptible) Gram-positive organisms with no marked toxicity towards eukaryotic cells. We have undertaken to characterize the interactions of oritavancin with phospholipid bilayers, using liposomes (LUV) and supported bilayers made of cardiolipin (CL) or phosphatidylglycerol (POPG) and phosphatidylethanolamine (POPE), all abundant in Gram-positive organisms. Changes in membrane permeability were followed by the release of calcein entrapped in liposomes at self-quenching concentrations, and changes in nanoscale lipid organization examined by Atomic Force Microscopy (AFM). Oritavancin caused a fast (< 5 min) and complete (> 95%) release of calcein from CL:POPE liposomes, and a slower but still substantial (50% in 60 min) release from POPG:POPE liposomes, which was (i) concentration-dependent (0-600 nM; [microbiologically meaningful concentrations]); (ii) enhanced by an increase in POPG:POPE ratio, and decreased when replacing POPG by DPPG. AFM of CL:POPE supported bilayers showed that oritavancin (84 nM) caused a remodeling of the lipid domains combined with a redisposition of the drug and degradation of the borders. In all the above studies, vancomycin was without a significant effect at 5.5 μM. Electrostatic interactions, together with lipid curvature, lipid polymorphism as well of fluidity play a critical role for the permeabilization of lipid bilayer and changes in lipid organization induced by oritavancin.  相似文献   

15.
Rhodopsin is an important example of a G protein-coupled receptor (GPCR) in which 11-cis-retinal is the ligand and acts as an inverse agonist. Photolysis of rhodopsin leads to formation of the activated meta II state from its precursor meta I. Various mechanisms have been proposed to explain how the membrane composition affects the meta I-meta II conformational equilibrium in the visual process. For rod disk membranes and recombinant membranes containing rhodopsin, the lipid properties have been discussed in terms of elastic deformation of the bilayer. Here we have investigated the relation of nonlamellar-forming lipids, such as dioleoylphosphatidylethanolamine (DOPE), together with dioleoylphosphatidylcholine (DOPC), to the photochemistry of membrane-bound rhodopsin. We conducted flash photolysis experiments for bovine rhodopsin recombined with DOPE/DOPC mixtures (0:100 to 75:25) as a function of pH to explore the dependence of the photochemical activity on the monolayer curvature free energy of the membrane. It is well-known that DOPC forms bilayers, whereas DOPE has a propensity to adopt the nonlamellar, reverse hexagonal (H(II)) phase. In the case of neutral DOPE/DOPC recombinants, calculations of the membrane surface pH confirmed that an increase in DOPE favored the meta II state. Moreover, doubling the PE headgroup content versus the native rod membranes substituted for the polyunsaturated, docosahexaenoic acyl chains (22:6 omega 3), suggesting rhodopsin function is associated with a balance of forces within the bilayer. The data are interpreted by applying a flexible surface model, in which the meta II state is stabilized by lipids tending to form the H(II) phase, with a negative spontaneous curvature. A simple theory, based on principles of surface chemistry, for coupling the energetics of membrane proteins to material properties of the bilayer lipids is described. For rhodopsin, the free energy balance of the receptor and the lipids is altered by photoisomerization of retinal and involves curvature stress/strain of the membrane (frustration). A new biophysical principle is introduced: matching of the spontaneous curvature of the lipid bilayer to the mean curvature of the lipid/water interface adjacent to the protein, which balances the lipid/protein solvation energy. In this manner, the thermodynamic driving force for the meta I-meta II conformational change of rhodopsin is tightly controlled by mixtures of nonlamellar-forming lipids having distinctive material properties.  相似文献   

16.
The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholines in gel phase lipid bilayers are shown to be sensitive to dipolar spin-spin interactions with paramagnetic ions in the aqueous phase. The reciprocal integrated intensity of the STESR spectrum is linearly dependent on aqueous Ni2+ ion concentration, hence, confirming the expectation that the STESR intensity is directly proportional to the spin-lattice relaxation time of the spin label. The gradient of the relaxation rate with respect to Ni2+ ion concentration decreases strongly with the position of the nitroxide group down the sn-2 chain of the spin-labeled lipid and is consistent with a 1/R3 dependence on the distance, R, from the bilayer surface. The values derived for the dimensions of the bilayer and lipid molecules in the case of dipalmitoyl phosphatidylcholine (DPPC) are in good agreement with those available from x-ray diffraction studies. Allowance for the multibilayer nature of the DPPC dispersions gives an estimate of the water layer thickness that is also consistent with results from x-ray diffraction. The profile of the paramagnetic ion-induced relaxation is drastically changed with DPPC dispersions in glycerol for which the lipid chains are known to be interdigitated in the gel phase. The terminal methyl groups of the lipid chains are located approximately in register with the C-3 atoms of the sn-2 chain of the oppositely oriented lipid molecules in the interdigitated phase. The thickness of the lipid layer and the effective thickness of the lipid polar group are reduced by ~40% in the interdigitated phase as compared with the bilayer phase. The calibrations of the distance dependence established by use of spin labels at defined chain positions should be applicable to STESR measurements on other biological systems.  相似文献   

17.
The axially symmetric powder pattern 2H-nuclear magnetic resonance (NMR) lineshapes observed in the liquid crystalline phase of pure lipid or lipid/cholesterol bilayers are essentially invariant to temperature, or, equivalently, to variations in the correlation times characterizing C-2H bond reorientations. In either of these melted phases, where correlation times for C-2H bond motions are shorter than 10(-7) s, information on the molecular dynamics of the saturated hydrocarbon chain would be difficult to obtain using lineshape analyses alone, and one must resort to other methods, such as the measurement of 2H spin-lattice relaxation rates, in order to obtain dynamic information. In pure lipid bilayers, the full power of the spin-lattice relaxation technique has yet to be realized, since an important piece of information, namely the orientation dependence of the 2H spin-lattice relaxation rates is usually lost due to orientational averaging of T1 by rapid lateral diffusion. Under more favorable circumstances, such as those encountered in the lipid/cholesterol mixtures of this study, the effects of orientational averaging by lateral diffusion are nullified, due to either a marked reduction (by at least an order of magnitude) in the diffusion rate, or a marked increase in the radii of curvature of the liposomes. In either case, the angular dependence of 2H spin-lattice relaxation is accessible to experimental study, and can be used to test models of molecular dynamics in these systems. Simulations of the partially recovered lineshapes indicate that the observed T1 anisotropies are consistent with large amplitude molecular reorientation of the C-2H bond among a finite number of sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We considered the issue of whether shifts in the metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium from lipid composition are fully explicable by differences in bilayer curvature elastic stress. A series of six lipids with known spontaneous radii of monolayer curvature and bending elastic moduli were added at increasing concentrations to the matrix lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the MI-MII equilibrium measured by flash photolysis followed by recording UV-vis spectra. The average area-per-lipid molecule and the membrane hydrophobic thickness were derived from measurements of the 2H NMR order parameter profile of the palmitic acid chain in POPC. For the series of ethanolamines with different levels of headgroup methylation, shifts in the MI-MII equilibrium correlated with changes in membrane elastic properties as expressed by the product of spontaneous radius of monolayer curvature, bending elastic modulus, and lateral area per molecule. However, for the entire series of lipids, elastic energy explained the shifts only partially. Additional contributions correlated with the capability of the ethanolamine headgroups to engage in hydrogen bonding with the protein, independent of the state of ethanolamine methylation, with introduction of polyunsaturated sn-2 hydrocarbon chains, and with replacement of the palmitic acid sn-1 chains by oleic acid. The experiments point to the importance of interactions of rhodopsin with particular lipid species in the first layer of lipids surrounding the protein as well as to membrane elastic stress in the lipid-protein domain.  相似文献   

19.
To elucidate effects of electrostatic interactions resulting from surface charges on structures and phase stability of cubic phases of lipid membranes, membranes of 1-monoolein (MO) and dioleoylphosphatidic acid (DOPA) (DOPA/MO membrane) mixtures have been investigated by small-angle x-ray scattering method. As increasing DOPA concentration in the DOPA/MO membrane at 30 wt% lipid concentration, a phase transition from Q(224) to Q(229) phase occurred at 0.6 mol% DOPA, and at and above 25 mol% DOPA, DOPA/MO membranes were in the L(alpha) phase. As NaCl concentration in the bulk phase increased, for 10% DOPA/90% MO membrane in excess water, a Q(229) to Q(224) phase transition occurred at 60 mM NaCl, and then a Q(224) to H(II) phase transition occurred at 1.2 M NaCl. Similarly, for 30% DOPA/70% MO membrane in excess water, at low NaCl concentrations it was in the L(alpha) phase, but at and above 0.50 M NaCl it was in the Q(224) phase, and then at 0.65 M NaCl a Q(224) to H(II) phase transition occurred. These results indicate that the electrostatic interactions in the membrane interface make the Q(229) phase more stable than the Q(224) phase, and that, at larger electrostatic interactions, the L(alpha) phase is more stable than the cubic phases (Q(224) and Q(229)). We have found that the addition of tetradecane to the MO membrane induced a Q(224)-to-H(II) phase transition and also that to the 30% DOPA/70% MO membrane induced an L(alpha)-to-H(II) phase transition. By using these membranes, the effect of the electrostatic interactions resulting from the membrane surface charge (DOPA) on the spontaneous curvature of the monolayer membrane has been investigated. The increase in DOPA concentration in the DOPA/MO membrane reduced the absolute value of spontaneous curvature of the membrane. In the 30% DOPA/70% MO membrane, the absolute value of spontaneous curvature of the membrane increased with an increase in NaCl concentration. On the basis of these new results, the phase stability of DOPA/MO membranes can be reasonably explained by the spontaneous curvature of the monolayer membrane and a curvature elastic energy of the membrane.  相似文献   

20.
The influence of cholesterol and POPE on lung surfactant model systems consisting of DPPC/DPPG (80:20) and DPPC/DPPG/surfactant protein C (80:20:0.4) has been investigated. Cholesterol leads to a condensation of the monolayers, whereas the isotherms of model lung surfactant films containing POPE exhibit a slight expansion combined with an increased compressibility at medium surface pressure (10-30 mN/m). An increasing amount of liquid-expanded domains can be visualized by means of fluorescence light microscopy in lung surfactant monolayers after addition of either cholesterol or POPE. At surface pressures of 50 mN/m, protrusions are formed which differ in size and shape as a function of the content of cholesterol or POPE, but only if SP-C is present. Low amounts of cholesterol (10 mol %) lead to an increasing number of protrusions, which also grow in size. This is interpreted as a stabilizing effect of cholesterol on bilayers formed underneath the monolayer. Extreme amounts of cholesterol (30 mol %), however, cause an increased monolayer rigidity, thus preventing reversible multilayer formation. In contrast, POPE, as a nonbilayer lipid thought to stabilize the edges of protrusions, leads to more narrow protrusions. The lateral extension of the protrusions is thereby more influenced than their height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号