首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional switches are often regulated by dynamic protein modifications. Assessing protein functions, in vivo, and their functional switches remains still a great challenge in this age of development. An alternative methodology based on in silico procedures may facilitate assessing the multifunctionality of proteins and, in addition, allow predicting functions of those proteins that exhibit their functionality through transitory modifications. Extensive research is ongoing to predict the sequence of protein modification sites and analyze their dynamic nature. This study reports the analysis performed on phosphorylation, Phospho.ELM (version 3.0) and glycosylation, OGlycBase (version 6.0) data for mining association patterns utilizing a newly developed algorithm, MAPRes. This method, MAPRes (Mining Association Patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications), is based on mining association among significantly preferred amino acids of neighboring sequence environment and modification sites themselves. Association patterns arrived at by association pattern/rule mining were in significant conformity with the results of different approaches. However, attempts to analyze substrate sequence environment of phosphorylation sites catalyzed for Tyr kinases and the sequence data for O-GlcNAc modification were not successful, due to the limited data available. Using the MAPRes algorithm for developing an association among PTM site with its vicinal amino acids is a valid method with many potential uses: this is indeed the first method ever to apply the association pattern mining technique to protein post-translational modification data.  相似文献   

2.
Protein phosphorylation is an important reversible post-translational modification of proteins, and it orchestrates a variety of cellular processes. Experimental identification of phosphorylation site is labor-intensive and often limited by the availability and optimization of enzymatic reaction. In silico prediction may facilitate the identification of potential phosphorylation sites with ease. Here we present a novel computational method named GPS: group-based phosphorylation site predicting and scoring platform. If two polypeptides differ by only two consecutive amino acids, in particular when the two different amino acids are a conserved pair, e.g., isoleucine (I) and valine (V), or serine (S) and threonine (T), we view these two polypeptides bearing similar 3D structures and biochemical properties. Based on this rationale, we formulated GPS that carries greater computational power with superior performance compared to two existing phosphorylation sites prediction systems, ScanSite 2.0 and PredPhospho. With database in public domain, GPS can predict substrate phosphorylation sites from 52 different protein kinase (PK) families while ScanSite 2.0 and PredPhospho offer at most 30 PK families. Using PKA as a model enzyme, we first compared prediction profiles from the GPS method with those from ScanSite 2.0 and PredPhospho. In addition, we chose an essential mitotic kinase Aurora-B as a model enzyme since ScanSite 2.0 and PredPhospho offer no prediction. However, GPS offers satisfactory sensitivity (94.44%) and specificity (97.14%). Finally, the accuracy of phosphorylation on MCAK predicted by GPS was validated by experimentation, in which six out of seven predicted potential phosphorylation sites on MCAK (Q91636) were experimentally verified. Taken together, we have generated a novel method to predict phosphorylation sites, which offers greater precision and computing power over ScanSite 2.0 and PredPhospho.  相似文献   

3.
Phosphorylation, one of the most common protein post‐translational modifications (PTMs) on hydroxyl groups of S/T/Y is catalyzed by kinases and involves the presence or absence of certain amino acid residues in the vicinity of the phosphorylation sites. Using MAPRes, we have analyzed the substrate proteins of Phospho.ELM 7.0 and found that there are both general and specific requirements for the presence or absence of particular amino acids in the vicinity of phosphorylated S/T/Y for both of the phosphorylation data, whether or not kinase information was taken into account. Patterns extracted by MAPRes for kinase‐specific data have been utilized to find the consensus sequence motifs for various kinases required to catalyze the process of phosphorylation on S/T/Y. These consensus sequences for different kinase groups, families, and individual members are consistent with those described earlier with some novel consensus reported for the first time. A comparison study for the patterns mined by MAPRes with the results of existing prediction methods was performed by searching for these patterns in the vicinity of phosphorylation sites predicted by different available method. This comparison resulted in 87–98% conformity with the results of the predictions by available methods. Additionally, the patterns mined by MAPRes for substrate sites included 61 kinases, the highest number analyzed so far. J. Cell. Biochem. 108: 64–74, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
大熊猫(Ailuropoda melanoleuca)是世界上极其宝贵的自然历史遗产,具有重要的学术研究价值,其生存和保护现状为世人所关注。而从分子水平上对大熊猫开展研究逐渐成为国内外研究的重点。目前,对大熊猫基因的研究多集中于线粒体(Zhang and Ryder,1994)和部分基因的克隆与分析(周荣家等,1998),而涉及众多功能基因及其生物学功能探索相对较少,  相似文献   

5.
6.
Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation.  相似文献   

7.
In Saccharomyces cerevisiae, oligosaccharyl transferase (OT) consists of nine different subunits. Three of the essential gene products, Ost1p, Wbp1p, and Stt3p, are N-linked glycoproteins. To study the function of the N-glycosylation of these proteins, we prepared single or multiple N-glycosylation site mutations in each of them. We established that the four potential N-glycosylation sites in Ost1p and the two potential N-glycosylation sites in Wbp1p were occupied in the mature proteins. Interestingly, none of the N-glycosylation sites in these two proteins was conserved, and no defect in growth or OT activity was observed when the N-glycosylation sites were mutated to block N-glycosylation in either subunit. However, in the third glycosylated subunit, Stt3p, there are two adjacent potential N-glycosylation sites (N(535)NTWN(539)NT) that, in contrast to the other subunits, are highly conserved in eukaryotic organisms. Mass spectrometric analysis of a tryptic digest of Stt3p showed that the peptide containing the two adjacent N-glycosylation sites was N-glycosylated at one site. Furthermore, the glycan chain identified as Man(8)GlcNAc(2) is found linked only to Asn(539). Mutation experiments were carried out at these two sites. Four single amino acid mutations blocking either N-glycosylation site (N535Q, T537A, N539Q, and T541A) resulted in strains that were either lethal or extremely temperature sensitive. However, other mutations in the two N-glycosylation sites N(535)NTWN(539)NT (N536Q, T537S, N540Q, and T541S), did not exhibit growth defects. Based on these studies, we conclude that N-glycosylation of Stt3p at Asn(539) is essential for its function in the OT complex.  相似文献   

8.
Proteoglycan modification is essential for development and early cell division in Caenorhabditis elegans. The specification of proteoglycan attachment sites is defined by the Golgi enzyme polypeptide xylosyltransferase. Here we evaluate the substrate specificity of this xylosyltransferase for its downstream targets by using reporter proteins containing proteoglycan modification sites from C. elegans syndecan/SDN-1. The N terminus of the SDN-1 contains a Ser-Gly proteoglycan site at Ser(71), flanked by potential mucin and N-glycosylation sites. However, Ser(71) was exclusively used as a proteoglycan site in vivo, based on mapping studies with a Ser(71) reporter protein, glycosyltransferase RNA interference, and co-expression of worm polypeptide xylosyltransferase. To elucidate the substrate requirements of this enzyme, a library of 42 point mutants of the Ser(71) reporter was expressed in tissue culture. The nematode proteoglycan modification site in SDN-1 required serine (not threonine), two flanking glycine residues (positions -1 and +1), and either one proximal acidic N-terminal amino acid (positions -4, -3, and -2) or a pair of distal N-terminal acidic amino acids (positions -6 and -5). C-terminal acidic amino acids, although present in many proteoglycan modification sites, had minimal impact on xylosylation at Ser(71). Proline inhibited glycosylation when present at -1, +1, or +2. The position of glycine, proline, and acidic amino acids allows the glycosylation machinery to discriminate between mucin and proteoglycan modification sites. The key residues that define proteoglycan modification sites also function with the Drosophila polypeptide xylosyltransferase, indicating that the specificity in the glycosylation process is evolutionarily conserved. Using a neural network method, a preliminary proteoglycan predictor has been developed.  相似文献   

9.
Mitogen-activated protein (MAP) kinases such as extracellular signal-regulated kinase (ERK) are important signaling proteins that phosphorylate (S/T)P sites in many different protein substrates. ERK binding to substrate proteins is mediated by docking sites including the FXFP motif and the D-domain. We characterized the sequence of amino acids that can constitute the FXFP motif using peptide and protein substrates. Substitutions of the phenylalanines at positions 1 and 3 had significant effects, indicating that these phenylalanines provide substantial binding affinity, whereas substitutions of the residues at positions 2 and 4 had less effect. The FXFP and D-domain docking sites were analyzed in a variety of positions and arrangements in the proteins ELK-1 and KSR-1. Our results indicate that the FXFP and D-domain docking sites form a flexible, modular system that has two functions. First, the affinity of a substrate for ERK can be regulated by the number, type, position, and arrangement of docking sites. Second, in substrates with multiple potential phosphorylation sites, docking sites can direct phosphorylation of specific (S/T)P residues. In particular, the FQFP motif of ELK-1 is necessary and sufficient to direct phosphorylation of serine 383, whereas the D-domain directs phosphorylation of other (S/T)P sites in ELK-1.  相似文献   

10.
The asparagine-X-serine/threonine (NXS/T) motif, where X is any amino acid except proline, is the consensus motif for N-linked glycosylation. Significant numbers of high-resolution crystal structures of glycosylated proteins allow us to carry out structural analysis of the N-linked glycosylation sites (NGS). Our analysis shows that there is enough structural information from diverse glycoproteins to allow the development of rules which can be used to predict NGS. A Python-based tool was developed to investigate asparagines implicated in N-glycosylation in five species: Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana and Saccharomyces cerevisiae. Our analysis shows that 78% of all asparagines of NXS/T motif involved in N-glycosylation are localized in the loop/turn conformation in the human proteome. Similar distribution was revealed for all the other species examined. Comparative analysis of the occurrence of NXS/T motifs not known to be glycosylated and their reverse sequence (S/TXN) shows a similar distribution across the secondary structural elements, indicating that the NXS/T motif in itself is not biologically relevant. Based on our analysis, we have defined rules to determine NGS. Using machine learning methods based on these rules we can predict with 93% accuracy if a particular site will be glycosylated. If structural information is not available the tool uses structural prediction results resulting in 74% accuracy. The tool was used to identify glycosylation sites in 108 human proteins with structures and 2247 proteins without structures that have acquired NXS/T site/s due to non-synonymous variation. The tool, Structure Feature Analysis Tool (SFAT), is freely available to the public at http://hive.biochemistry.gwu.edu/tools/sfat.  相似文献   

11.
真核翻译延伸因子1A(eEF1A)是真核生物蛋白质翻译过程中能将氨酰tRNA运送到核糖体A位点参与多肽延伸反应的多功能蛋白质. 本文主要利用多种生物信息学分析工具进行地中海涡虫翻译延伸因子1A(SmEF1A)蛋白序列的查找与eEF1A直系同源蛋白的搜索, 并基于90条直系同源蛋白进行eEF1A蛋白家族的进化踪迹分析和SmEF1A蛋白功能位点的比较研究. 结果表明,在eEF1A蛋白家族中共识别到338个踪迹残基位点和20个踪迹残基富集区域,SmEF1A蛋白的功能位点与踪迹残基位点密切相关,与GTP/Mg2+结合相关的S21、T72、D91、G94等重要位点均为全家族保守的踪迹残基,N 糖基化、磷酸化等蛋白修饰位点中踪迹残基位点往往是被修饰的部位或修饰功能发挥的关键辅助位点,而位于分子表面的配基结合口袋则与20个踪迹残基富集区域在分子表面形成的踪迹残基簇关系密切. eEF1A蛋白家族的进化踪迹分析为eEF1A蛋白重要功能区域关键残基的确定和未知功能位点的预测提供了重要信息.  相似文献   

12.
The importance of intrinsic disorder for protein phosphorylation   总被引:2,自引:0,他引:2  
Reversible protein phosphorylation provides a major regulatory mechanism in eukaryotic cells. Due to the high variability of amino acid residues flanking a relatively limited number of experimentally identified phosphorylation sites, reliable prediction of such sites still remains an important issue. Here we report the development of a new web-based tool for the prediction of protein phosphorylation sites, DISPHOS (DISorder-enhanced PHOSphorylation predictor, http://www.ist.temple. edu/DISPHOS). We observed that amino acid compositions, sequence complexity, hydrophobicity, charge and other sequence attributes of regions adjacent to phosphorylation sites are very similar to those of intrinsically disordered protein regions. Thus, DISPHOS uses position-specific amino acid frequencies and disorder information to improve the discrimination between phosphorylation and non-phosphorylation sites. Based on the estimates of phosphorylation rates in various protein categories, the outputs of DISPHOS are adjusted in order to reduce the total number of misclassified residues. When tested on an equal number of phosphorylated and non-phosphorylated residues, the accuracy of DISPHOS reaches 76% for serine, 81% for threonine and 83% for tyrosine. The significant enrichment in disorder-promoting residues surrounding phosphorylation sites together with the results obtained by applying DISPHOS to various protein functional classes and proteomes, provide strong support for the hypothesis that protein phosphorylation predominantly occurs within intrinsically disordered protein regions.  相似文献   

13.
旨在克隆内蒙古白绒山羊TSC2基因cDNA并分析其特性及基本表达模式.利用RT-PCR分段克隆TSC2基因cDNA片段并测序,将得到的cDNA各片段核苷酸序列拼接后获得绒山羊TSC2基因编码区全长序列(HQ684023)并进行生物信息学分析.半定量RT-PCR方法检测TSC2基因在不同组织中的表达特异性.结果表明内蒙古白绒山羊TSC2基因cDNA编码区核苷酸序列为5184 bp,包含了编码1727个氨基酸残基的全长ORF.核苷酸序列与牛、猪、马、大熊猫、犬、恒河猴、人、小鼠及大鼠的同源性分别为97%、90%、89%、88%、87%、87%、87%、86%和86%.NCBI CDD程序预测该基因编码的蛋白质有一个Tuberin结构域和一个Rap-GAP结构域;Psite程序分析有5个N糖基化位点、2个cAMP和cGMP依赖蛋白激酶磷酸化位点、16个蛋白激酶C磷酸化位点、25个酪蛋白激酶磷酸化位点.PSORT程序预测其定位于胞内体膜.TSC2基因在内蒙古白绒山羊的睾丸、脑、肝脏、肺、乳腺、脾和肾脏等组织中都有表达,mRNA丰度在睾丸中较高,乳腺中较低.  相似文献   

14.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

15.
Here we report the use of automated Edman degradation of covalently linked glycopeptides to identify positively the sites of O- and N-glycosylation. The O-glycosidic linkage of carbohydrate to the hydroxy amino acids Ser and Thr is a major form of post-translational modification. However, unlike Asn-linked glycosylation, which is identified by the consensus sequence Asn-Xaa-Thr/Ser, no simple motif conferring O-linkage to Thr and Ser has been described. After sequencing glycopeptides derived from two cell surface glycoproteins, a Thr-O-glycosylation motif of Xaa-Pro-Xaa-Xaa, where at least one Xaa = Thr(Sac), has been defined. This motif predicts the site(s) of Pro- associated Thr-O-glycosylation in O-glycosylated proteins, although it is clear that there are also other forms of Thr-O-glycosylation not associated with Pro.  相似文献   

16.
Rao RS  Bernd W 《Bioinformation》2010,5(5):208-212
Protein N-glycosylation requires the presence of asparagine (N) in the consensus tri-peptide NXS/T (where X is any amino acid, S is serine and T is threonine). Several factors affect the glycosylation potential of NXS/T sequons and one such factor is the type of amino acid at position X. While proline was shown to negatively affect N-glycosylation, the nature of other amino acids at this position is not clear. Using Markov chain analysis of tri-peptide NXS/T from viral, archaeal and eukaryotic proteins as well as experimentally confirmed N-glycosylated sequons from eukaryotic proteins, we show here that the occurrence of most sequon types differ significantly from the expected probability. Sequon types with F, G, I, S, T and V amino acids are consistently preferred while those with P and charged amino acids are under-represented in all four groups. Further, proteins contained far fewer number of possible sequon types (maximum 20 types for NXS or NXT taken separately) for any given number of sequons, which may be explained based on random sampling. Consistent with the present finding, majority of the over-represented sequons found in two important viral envelope glycoproteins (hemagglutinin of influenza A H3N2 and glycoprotein120 of HIV-1) are indeed preferred sequon types, which may provide a selective advantage. Accordingly, although there seems to be some preference for sequons, this preference may not be unique to N-glycosylation.  相似文献   

17.
The modification of proteins by SUMO (small ubiquitin-like modifier) regulates various cellular processes. Sumoylation often occurs on a specific lysine residue within the consensus motif psiKxE/D. However, little is known about the specificity and selectivity of SUMO target sites. We describe here a SUMO assay with peptide array on solid support for the simultaneous characterization of hundreds of different SUMO target sites. This approach was used to characterize known SUMO substrates. The position of the motif within the peptide and the amino acids flanking the acceptor site affected the efficiency of SUMO modification. Interestingly, a sequence of only four amino acids, corresponding to the SUMO consensus motif without flanking amino acids, was a bona fide target site. Analysis of a peptide library for all variants of the psiKxE/D consensus motif revealed that the first and third positions in the tetrapeptide preferably contain aromatic amino acid residues. Furthermore, by adding the SUMO E3 ligase PIAS1 to the reaction mixture, we show specific enhancement of the modification of a PIAS1-dependent SUMO substrate in this system. Overall, our results demonstrate that the sumoylation assay with peptide array on solid support can be used for the high-throughput characterization of SUMO target sites, and provide new insights into the composition, selectivity and specificity of SUMO target sites.  相似文献   

18.
The addition of N-glycans to clinically used proteins enhances their therapeutic features. Here we report the design of a novel peptide tag with an unnatural N-glycosylation site, which may increase the N-glycan content of generally any protein. The designed GlycoTags were attached to A1AT, EPO and AGP and constructs were expressed in HEK293 or CHO cells. Hereby we could prove that the attached unnatural N-glycosylation site is decorated with complex-type N-glycans and that the spacer as well as the C-terminal "tail" sequence are critical for the usage of the novel N-glycosylation site. This demonstrates that the novel GlycoTag is a convenient tool to provide proteins with extra N-glycan moieties by simply adding a peptide tag sequence as small as 22 amino acids.  相似文献   

19.
We aimed to identify antibodies that can recognize the Asn-Xaa-Ser/Thr(NXS/T) N-glycosylation site that guides oligosaccharyltransferase (OT) activity. We used synthetic Asn-Cys-Ser/Thr(NCS/T) tripeptides conjugated to bovine serum albumin to isolate single chain antibody fragments of a variable region (scFv) from the Griffin 1 phage antibody library. Although Ser and Thr have different side chains, the scFv proteins thus isolated bound to both NCS and NCT with Kd values of the order of 10(-6) M and accepted the substitution of the Cys residue with various amino acids, including Ala, Gly, and Val. However, these proteins recognized neither Asn-Pro-Ser/Thr nor non-NXS/T tripeptides. The scFv proteins recognized NCS/T and N-glycosylation site of mutant yeast protein disulfide isomerase when they were in their native but not denatured state. These results indicate that antibody recognition of the NXS/T motif is conformation dependent and suggest that NXS/T spontaneously adopts a specific conformation that is necessary for antibody recognition. These features are likely to correlate with the known binding specificity of OT.  相似文献   

20.
H P Rihs  D A Jans  H Fan    R Peters 《The EMBO journal》1991,10(3):633-639
We have previously demonstrated [Rihs, H.-P. and Peters, R. (1989) EMBO J., 8, 1479-1484] that the nuclear transport of recombinant proteins in which short fragments of the SV40 T-antigen are fused to the amino terminus of Escherichia coli beta-galactosidase is dependent on both the nuclear localization sequence (NLS, T-antigen residues 126-132) and a phosphorylation-site-containing sequence (T-antigen residues 111-125). While the NLS determines the specificity, the rate of transport is controlled by the phosphorylation-site-containing sequence. The present study furthers this observation and examines the role of the various phosphorylation sites. Purified, fluorescently labeled recombinant proteins were injected into the cytoplasm of Vero or hepatoma (HTC) cells and the kinetics of nuclear transport measured by laser microfluorimetry. By replacing serine and threonine residues known to be phosphorylated in vivo, we identified the casein kinase II (CK-II) site S111/S112 to be the determining factor in the enhancement of the transport. Either of the residues 111 or 112 was sufficient to elicit the maximum transport enhancement. The other phosphorylation sites (S120, S123, T124) had no influence on the transport rate. Examination of the literature suggested that many proteins harboring a nuclear localization sequence also contain putative CK-II sites at a distance of approximately 10-30 amino acid residues from the NLS. CK-II has been previously implicated in the transmission of growth signals to the nucleus. Our results suggest that CK-II may exert this role by controlling the rate of nuclear protein transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号