首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

2.
Transduction of Low-Copy Number Plasmids by Bacteriophage P22   总被引:5,自引:0,他引:5       下载免费PDF全文
B. A. Mann  J. M. Slauch 《Genetics》1997,146(2):447-456
The generalized transducing bacteriophage of Salmonella typhimurium, P22, can transduce plasmids in addition to chromosomal markers. Previous studies have concentrated on transduction of pBR322 by P22 and P22HT, the high transducing mutant of P22. This study investigates the mechanism of P22HT transduction of low-copy number plasmids, namely pSC101 derivatives. We show that P22HT transduces pSC101 derivatives that share homology with the chromosome by two distinct mechanisms. In the first mechanism, the plasmid integrates into the chromosome of the donor by homologous recombination. This chromosomal fragment is then packaged in the transducing particle. The second mechanism is a size-dependent mechanism involving a putative plasmid multimer. We propose that this multimer is formed by interplasmidic recombination. In contrast, P22HT can efficiently transduce pBR322 by a third mechanism, which is independent of plasmid homology with the chromosome. It has been proposed that the phage packages a linear concatemer created during rolling circle replication of pBR322, similar in fashion to phage genome packaging. This study investigates the role of RecA, RecD, and RecF recombination proteins in plasmid/plasmid and plasmid/chromosome interactions that form packageable substrates in the donor. We also examine the resolution of various transduced plasmid species in the recipient and the roles of RecA and RecD in these processes.  相似文献   

3.
Summary We characterized cointegrates formed in an Escherichia coli rec strain between bacteriophage P1 genomes and small plasmids related to pBR322. The partners were, on the one hand, either phage P1 DNA, which carries one copy of IS1, or phage P1-15 DNA, a derivative which lacks the IS1, and, on the other hand, plasmids containing either a split IS1 or no IS1. In the presence of IS1 sequences on both partners, cointegrates were usually formed by reciprocal recombination between IS1 sequences. Cointegrates between P1 and a plasmid carrying no IS1 sequence were formed by transpositional cointegration mediated by IS1 of P1. Cointegrates between P1-15 and small plasmids containing a split IS1 were formed by one of three ways: (a) acquisition of an IS1 by P1-15 followed by reciprocal recombination between IS1 sequences, (b) transpositional cointegration mediated by the split IS1 element, Tn2657, or (c) involvement of the invertible segment carried on P1-15 DNA. Most cointegrates segregated into the small plasmids and phage P1 derivatives. A comparison of the phenomena studied and of their frequencies allowed us to conclude that cointegrate formation is a molecular mechanism involved in the transduction of plasmids smaller than those packageable into P1 virions, although it does not seem to be the only process used.  相似文献   

4.
The molecular processes involved in the transduction of small staphylococcal plasmids by a generalized transducing phage, phi 11, have been analysed. The plasmids are transduced in the form of linear concatemers containing only plasmid DNA; plasmid-initiated replication is required for their generation but additive interplasmid recombination is not. Concatemers are probably generated by the interaction of one or more phage functions with replicating plasmid DNA. Insertion of any restriction fragment of the phage into the plasmid causes an approximately 10(5)-fold increase in transduction frequency, regardless of the size or genetic content of the fragment. The resulting transducing particles (Hft particles) contain mostly pure linear concatemers composed of tandem repeats of the plasmid::phage chimera, and their production requires active plasmid-initiated replication. The high frequency of transduction is a consequence of homologous recombination between the linear chimeric and phage concatemers, which has the effect of introducing an efficient pac site into the former. Following introduction into lysogenic recipient bacteria, the transducing DNA is first converted to the supercoiled form, then processed to monomers by a mechanism that requires the active participation of the plasmid replication system.  相似文献   

5.
A tandem DNA duplication carried on a ColE1-derived plasmid segregates at high frequency upon generalized transduction by phage P22 HT. Transductional segregation of the plasmid-borne duplication can be promoted either by RecA or by the Erf function of P22, indicating that transductional segregation is a consequence of the recombination events that re-circularize the plasmid in the recipient cell. RecA-mediated and Erf-mediated transduction give similar frequencies of duplication segregation and yield the same types of segregation products, indicating that two distinct recombination machineries (RecA + RecBCD and Erf + RecBCD) perform similar or identical recombination reactions on plasmid DNA substrates transduced by bacteriophage P22 HT. Received: 4 September 1997 / Accepted: 23 March 1998  相似文献   

6.
Summary Clo DF13 plasmids that are present at high copy-number in bacterial cells, such as Clo DF13 cop1 Ts, cop2 and cop3 are not stably inherited in the progeny, when certain plasmid DNA regions have been deleted. We have localized two Clo DF13 DNA regions involved in stable maintenance through accurate partitioning (par) namely parA, located between 71% and 72% and parB, located between 45% and 50% on the Clo DF13 genome. The instability of these cop plasmids which is accompanied by the formation of high amounts of multimeric DNA molecules, could be abolished by the insertion of transposon Tn901 into the plasmid genome. In particular that part of Tn901, that encodes for the site-specific recombination/ resolution system, appeared to be essential for stabilizing plasmid molecules. Wild-type parA- and/or parB- Clo DF13 plasmids, in contrast to cop mutants lacking these regions, are stably maintained during subsequent cell division, indicating that other (host specified) functions contribute to plasmid stability. Analysis of the role of host recombination systems in plasmid partitioning revealed that the recA function has no influence and recBC contributes only weakly to plasmid stability. With respect to the recE pathway, however, we found that in a recE proficient host all plasmids, even those lacking parA and/or parB, are stably maintained, indicating that the function of parA and parB can be replaced not only by the site-specific resolution functions of transposon Tn901, but also by the recE system. The possible role of plasmid specified and host specified functions in plasmid partitioning will be discussed.  相似文献   

7.
J C Piffaretti  O Fayet 《Gene》1981,13(3):319-325
Transduction experiments using phage λ as a vector have shown that non-conjugative plasmids can be transduced from one cell to the other, provided the phage or the plasmid DNA carries a copy of a Tn3-like transposon. The transduction is a result of replicon fusion between the phage and the plasmid DNA occurring during the transposition event.  相似文献   

8.
V B Rao  V Thaker  L W Black 《Gene》1992,113(1):25-33
Recombinant plasmid DNAs containing long DNA inserts that can be propagated in Escherichia coli would be useful in the analysis of complex genomes. We tested a bacteriophage T4 in vitro DNA packaging system that has the capacity to package about 170 kb of DNA into its capsid for cloning long DNA fragments. We first asked whether the T4 in vitro system can package foreign DNA such as concatemerized lambda imm434 DNA and phage P1-pBR322 hybrid DNA. The data suggest that the T4 system can package foreign DNA as efficiently as the mature phage T4 DNA. We then tested the system for its ability to clone foreign DNA fragments using the P1-pBR322 hybrid vectors constructed by Sternberg [Proc. Natl. Acad. Sci. USA 87 (1990) 103-107]. E. coli genomic DNA fragments were ligated with the P1 vectors containing two directly oriented loxP sites, and the ligated DNA was packaged by the T4 in vitro system. The packaged DNA was then transduced into E. coli expressing the phage P1 cyclization recombination protein recombinase to circularize the DNA by recombination between the loxP sites situated at the ends of the transduced DNA molecule. Clones with long DNA inserts were obtained by using this approach, and these were maintained as single-copy plasmids under the control of the P1 plasmid replicon. Clones with up to about 122-kb size inserts were recovered using this approach.  相似文献   

9.
Summary A gene library of chromosomal PstI fragments from Salmonella typhimurium strain DB5575 has been established. By means of phage P22 mediated transduction, ten different clones which contained inserts that promoted plasmid transduction were selected out of a total of about 7,000 clones. Seven of these clones carried inserts that stimulated transduction independently of general and int-promoted recombination and were interpreted as carrying pac analogous signals. The remaining three clones carried inserts that promoted transduction under recombination proficient conditions, whereas transduction occurred at reduced rate in the absence of recombination. These were believed to have short regions of homology with P22 DNA.  相似文献   

10.
RecE independent deletions of recombinant plasmids in Bacillus subtilis   总被引:5,自引:0,他引:5  
M Uhlén  J I Flock  L Philipson 《Plasmid》1981,5(2):161-169
Fragments from the Bacillus bacteriophage φ105 have been cloned in recE+ and recE? bacteria lysogenic and nonlysogenic for the phage. Recombination between homologous DNA in the plasmid and the prophage occurs only in the rec+ strain at a low frequency of around 4%. After prolonged cultivation with selective pressure on the antibiotic resistance gene of the vector, the bacteria contained only plasmids with various deletions. This process is recE independent and occurs irrespective of whether base pair homology exists between chromosomal and plasmid DNA. The rate of spontaneous curing of the plasmid decreases in parallel to the appearance of deletions, presumably due to higher stability of the small plasmids.  相似文献   

11.
Summary The construction of plasmids which facilitate the study of interplasmidic and intraplasmidic recombination is described. In this system, a single recombination event between two mutated Ter genes on separate plasmids or on one plasmid leads to a change in the host phenotype from sensitivity to resistance to tetracycline.Recombination proficiencies have been determined for different E. coli K-12 strains: both interplasmidic and intraplasmidic recombination are independent of the recBC gene product. RecA mutations decrease the proficiency of plasmidic recombination 40–100 fold. Intraplasmidic and interplasmidic recombination via the recE pathway are more efficient than via the recBC pathway. Intraplasmidic recombination, but not interplasmidic recombination via the recE pathway is independent of a functional recA product.  相似文献   

12.
The temperate bacteriophage phiadh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10 to 10 transductants per PFU. BglII-generated DNA fragments from phage phiadh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage phiadh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 10- to 10-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of phiadh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the phiadh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::phiadh molecule. In addition to strain ADH, pTRK170 could be transduced via phiadh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).  相似文献   

13.
Recombination of wild-type and mutant loxP sites mediated by wild-type Cre protein was analyzed in vivo using a sensitive phage P1 transduction assay. Contrary to some earlier reports, recombination between loxP sites was found to be highly specific: a loxP site recombined in vivo only with another of identical sequence, with no crossover recombination either between a wild-type and mutant site; or between two different mutant sites tested. Mutant loxP sites of identical sequence recombined as efficiently as wild-type. The highly specific and efficient recombination of mutant loxP sites in vivo helped in developing a procedure to progressively truncate DNA from either end of large genomic inserts in P1-derived artificial chromosomes (PACs) using transposons that carry either a wild-type or mutant loxP sequence. PAC libraries of human DNA were constructed with inserts flanked by a wild-type and one of the two mutant loxP sites, and deletions from both ends generated in clones using newly constructed wild-type and mutant loxP transposons. Analysis of the results provides new insight into the very large co-integrates formed during P1 transduction of plasmids with loxP sites: a model with tri- and possibly multimeric co-integrates comprising the PAC plasmid, phage DNA, and transposon plasmid(s) as intermediates in the cell appears best to fit the data. The ability to truncate a large piece of DNA from both ends is likely to facilitate functionally mapping gene boundaries more efficiently, and make available precisely trimmed genes in their chromosomal contexts for therapeutic applications.  相似文献   

14.
Role of Erf Recombinase in P22-Mediated Plasmid Transduction   总被引:4,自引:2,他引:2       下载免费PDF全文
A. Garzon  D. A. Cano    J. Casadesus 《Genetics》1995,140(2):427-434
In the absence of host RecA function, plasmid transduction by bacteriophage P22 can be mediated by Erf recombinase. Erf is not carried on the infecting particle but synthesized upon infection. In the recipient cell, Erf can promote both generalized plasmid transduction (which requires the circularization of plasmids transduced as linear multimers) and specialized plasmid transduction (which requires the release of plasmid DNA from linear plasmid-phage cointegrates). Both processes of Erf-mediated plasmid transduction require host RecBCD function. In contrast, RecBCD is not required for Erf-mediated circularization of P22 DNA.  相似文献   

15.
High-frequency plasmid transductions in Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus strains mediated by pac-type bacteriophages were observed and further investigated. The frequency of plasmid transduction by phages LL-H and LL-S attained levels of from 0.10 to about 1 with plasmid pX3, but only about 2 × 10−2 with plasmid pJK650. Infection of L. delbrueckii subsp. lactis strain LKT(pX3) or ATCC 15808(pX3) with phage LL-H resulted in intensive concatemerization of plasmid pX3, and most progeny phage particles contained concatemers of plasmid DNA instead of phage LL-H DNA. The synthesis of phage LL-H DNA was depressed. No evident homology or recombination was observed between phage LL-H DNA and plasmid pX3. The unusually high frequency of plasmid pX3 transduction by phage LL-H could be considered to result from specific interaction(s) between a particular phage and plasmid. These interactions may include pX3-mediated blockage of phage LL-H DNA replication and effective use of a particular pac-like site located about 1 kb from BglII in the smaller NdeI-BglII fragment of plasmid pX3. Phage LL-H together with plasmid vector pX3 could be used as effective plasmid transduction tools for genetic engineering of L. delbrueckii subsp. lactis and subsp. bulgaricus strains.  相似文献   

16.
Intergeneric complementation ofEscherichia coli recA mutants was used to identify recombinant plasmids, within a genomic library derived fromZymomonas mobilis, that carryZ. mobilis recA-like gene. Screening of 1100 individualE. coli strains revealed four clones expressing therecA+ character. On restriction analysis, all four recombinant plasmids were found to be related and to exhibit a common 6.7-kb fragment. Consequently, one of the four recombinant plasmids, pZR27, was selected for further characterization. When introduced intoE. coli recA mutants, pZR27 restored resistance to methyl methane sulfonate, mitomycin-C, and UV irradiation, as well as recombination proficiency when measured by standard Hfr-mediated conjugation. The clonedrecA-like gene also restored the spontaneous and mitomycin-C-induced phage production. The origin of the insert in pZR27 from the chromosome ofZ. mobilis was confirmed by Southern transfer and DNA hybridization. However, no homology was found between therecA ofE. coli andZ. mobilis chromosomal insert DNA. TheZ. mobilis recA-like gene also encoded a major polypeptide of 38-kDa on SDS-PAGE.  相似文献   

17.
Summary We demonstrated that bacteriophages P1 and P22 were able to form various types of hybrids with six out of seven different R plasmids tested. When the same R plasmid was used for isolation, P1-R hybrids usually carried more resistance markers than P22-R. Several genetical observations suggest that the hybrid prophages carried the resistance markers transposed to the phage genomes without loss of essential phage genes. Upon UV-irradiation the prophages produced phage lysates that transduced the relevant resistance markers at high frequencies by lysogenic conversion. The insertion of the resistance markers was even acquired by the P1 or P22 genomes during one-step growth in R+ cells. Some lytically prepared lysates grown on R+ cells contained the hybrids at a frequency of 10-7 to 10-6/plaqueforming unit. Analysis of P1-transductants for resistance markers of the R plasmids revealed in some cases more specialized transductants than generalized transductants. These results strongly indicate that a precise genetic map of an R plasmid can not be established only on the basis of co-transduction frequencies of the resistance markers of the R plasmid.  相似文献   

18.
Transduction of multi-copy plasmid pBR322 by bacteriophage Mu   总被引:3,自引:0,他引:3  
Summary The temperate bacteriophage Mu transduces the 4363 bp multi-copy plasmid pBR322 at frequencies similar to those of chromosomal markers. Plasmid transducing particles contain DNA molecules of Mu DNA length. Plasmid DNA is transduced as a head-to-tail oligomer that becomes circularized in the recipient cell. The rec system of the donor strain participates in oligomer formation and the rec system of the recipient strain is required for oligomer circularization. Possible mechanisms that may explain the origin of plasmid transducing particles are discussed.  相似文献   

19.
The temperate bacteriophage adh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10-8 to 10-10 transductants per PFU. BglII-generated DNA fragments from phage adh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage adh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 102- to 105-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of adh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the adh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::adh molecule. In addition to strain ADH, pTRK170 could be transduced via adh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).  相似文献   

20.
Evidence of abortive recombination in ruv mutants of Escherichia coli K12   总被引:5,自引:0,他引:5  
Summary Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec + sbc + strains, depending on the plasmid used. Recombinant plasmids carrying ruv + were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA +strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号