首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the formation of giant proteoliposomes containing P-glycoprotein (P-gp) from a solution of small proteoliposomes that had been deposited and partially dried on a film of agarose. This preparation method generated a significant fraction of giant proteoliposomes that were free of internalized vesicles, making it possible to determine the accessible liposome volume. Measuring the intensity of the fluorescent substrate rhodamine 123 (Rho123) inside and outside these giant proteoliposomes determined the concentration of transported substrates of P-gp. Fitting a kinetic model to the fluorescence data revealed the rate of passive diffusion as well as active transport by reconstituted P-gp in the membrane. This approach determined estimates for the membrane permeability coefficient (Ps) of passive diffusion and rate constants of active transport (kT) by P-gp as a result of different experimental conditions. The Ps value for Rho123 was larger in membranes containing P-gp under all assay conditions than in membranes without P-gp indicating increased leakiness in the presence of reconstituted transmembrane proteins. For P-gp liposomes, the kT value was significantly higher in the presence of ATP than in its absence or in the presence of ATP and the competitive inhibitor verapamil. This difference in kT values verified that P-gp was functionally active after reconstitution and quantified the rate of active transport. Lastly, patch clamp experiments on giant proteoliposomes showed ion channel activity consistent with a chloride ion channel protein that co-purified with P-gp. Together, these results demonstrate several advantages of using giant rather than small proteoliposomes to characterize transport properties of transport proteins and ion channels.  相似文献   

2.
Plasma membrane H+-translocating ATPase was partially purifiedfrom mung bean (Phaseolus mungo L.) roots and reconstitutedinto soybean phospholipid (asolectin) liposomes by the n-octylglucosidedilution method. The resulting proteoliposomes were mainly unilamellarvesicles ranging in size from 0.05 to 0.2 µm. The existenceof ATP-drived H+-pumping across the proteoliposomes was demonstratedby the quenching of quinacrine fluorescence in the presenceof Mg2+. The quenching could be abolished by an uncoupler, FCCP,and an inhibitor of H+-translocating ATPase, vanadate. The reconstitutedATPase consisted of three major polypeptides of 105 KDa, 67KDa and 57 KDa. Its pH optimum, divalent cation stimulationand vanadate sensitivity were similar to those of partiallypurified ATPase. However, the specificity toward ATP was muchgreater following reconstitution. Also reconstitution reducedthe degree of inhibition by DCCD. Local anesthetics (e.g. dibucaine)had no effect on H+-pumping activity but increased the ATPaseactivity when proteoliposomes were reconstituted in their presence. (Received May 2, 1986; Accepted October 17, 1986)  相似文献   

3.
A simple method for the reconstitution of membrane protein from submicron proteoliposomes into giant unilamellar vesicles (GUVs) is presented here: This method does not require detergents, fusion peptides or a dehydration step of the membrane protein solution. In a first step, GUVs of lipids were formed by electroformation, purified and concentrated; and in a second step, the concentrated GUV solution was added to a small volume of vesicles or proteoliposomes. Material transfer from submicron vesicles and proteoliposomes to GUVs occurred spontaneously and was characterized with fluorescent microscopy and patch-clamp recordings. As a functional test, the voltage-dependent, anion-selective channel protein was reconstituted into GUVs, and its electrophysiological activity was monitored with the patch clamp. This method is versatile since it is independent of the presence of the protein, as demonstrated by the fusion of fluorescently labeled submicron vesicles and proteoliposomes with GUVs.  相似文献   

4.
The effects of calmodulin (from spinach) on the Ca2+-dependentCl--sensitive anion channel in the Chara plasmalemma (Okiharaet al. 1991) were studied by the inside-out patch-clamp technique.The current of Cl- ions, which flowed through the channel at1.0 µM Ca2+, tended to decrease irregularly with time.This tendency toward a decrease in the current was no longerapparent after application of calmodulin for some time. Theactivity of the channel was restored to a small extent or tendedto increase during the early stages of application of calmodulin.Such a transient action of calmodulin on the channel activitywas evident, at voltages more negative than –100 mV. (Received August 20, 1992; Accepted October 19, 1992)  相似文献   

5.
A Cl channel and two types of K+ channel have been observed,by the use of the patch-clamp technique, in the membrane surroundingcytoplasmic droplets from Chara corallina. Measurements on cell-attachedpatches showed that the channel selective for Cl hada chord conductance of 21 pS at the resting membrane p.d. (mean= 11 mV, n = 19) and when open, passed an outward current of1.4 pA (n = 24 patches) at the resting p.d., with reversal ofthe direction of current at –54 mV (130 mol m–3Cl in the external solution). The Cl concentrationin the cytoplasmic droplet calculated from the reversal p.d.was 15 mol m–3. The channel strongly rectified outwardcurrent flow, but this rectification disappeared with symmetricalCl concentrations across detached patches of membrane.It is concluded that rectification observed in cell-attachedpatches is primarily due to asymmetric Cl– concentrationsrather than an asymmetry in energy barriers to Cl permeationin the channel or any voltage-dependent kinetics of the channel.The channel was rarely observed in detached patches despitebeing commonly observed in cell-attached patches. However, theabsence of Ca2+ at the cytoplasmic face of the membrane allowedobservation of the channel in detached patches for brief periods,during which ion substitution experiments revealed a permeabilitysequence of aspartate (76:33:1). A 100 pS K+ channel previously described by Luhring (1986) wasfrequently observed, in some instances simultaneously, witha channel having a conductance of 60 pS and displaying outwardrectification. This rectification was due to the channel remainingopen almost continuously for positive membrane potential differences(p.d.) and remaining shut almost continuously for negative p.d.'s.The 60 pS channel, like the 100 pS K+ channel, reversed currentflow at the resting p.d., suggesting that it was also permeableto K+. Key words: Plant ion-channels, chloride channel, potassium channel, patch-clamp  相似文献   

6.
We have previously reported that ATP-inhibitable K+channels, in vesicles derived from the basolateral membrane ofNecturus maculosus small intestinal cells, exhibit volumeregulatory responses that resemble those found in the intact tissueafter exposure to anisotonic solutions. We now report that increases inK+ channel activity can also be elicited by exposure ofthese vesicles to isotonic solutions containing glucose or alanine thatequilibrate across these membranes. We also demonstrate that swellingafter exposure to a hypotonic solution or an isotonic solutioncontaining alanine or glucose reduces inhibition of channel activity byATP and that this finding cannot be simply attributed to dilution ofintravesicular ATP. We conclude that ATP-sensitive, stretch-activated K+ channels may be responsible for the well-establishedincrease in basolateral membrane K+ conductance ofNecturus small intestinal cells after the addition of sugarsor amino acids to the solution perfusing the mucosal surface, and wepropose that increases in cell volume, resulting in membrane stretch,decreases the sensitivity of these channels to ATP.

  相似文献   

7.
The electrochemical potential difference for each dissociationstate of malic acid across the tonoplast of leaf cells was examinedin two CAM plants, Graptopetalum paraguayense and Kalanchoëdaigremontiana. The concentration of malic acid in each dissociationstate was estimated from an analysis of pH and concentrationsof ionic species that included calcium, malate and isocitrate.The vacuoles contained 30–40 mM isocitrate and 50–70mM calcium in G. paraguayense, and 20–30 mM isocitrateand 70–100 mM calcium in K. daigremontiana. For the calculationof the pattern of dissociation of malic acid, the formationof chelates of calcium with malate and isocitrate, which havedifferent stability constants depending on the dissociationof the acids, were also taken into consideration. The vacuolarconcentrations of the divalently dissociated form of malic acid(mal2– were 4–7 mM and 1-3 mM in G. paraguayenseand in K. daigremontiana, respectively. To obtain informationabout the cytoplasmic concentration of malate, the apparentinhibition constant for malate of phosphoenolpyruvate carboxylasewas measured. It was about 330 µM in the dark period and60 µM in the light period. Considering an inside-positivemembrane potential, we conclude that mal2– can be takenup passively into the vacuole during the dark period and canbe released passively from the vacuole during the light period.Two types of channel (the "SV-type" channel and a novel "MU-type"channel) which we found recently in G. paraguayense [Iwasakiet al. (1992) Plant Physiol. 98: 1494] are probably involvedin the uptake and the release of malate in the diurnal CAM rhythm.The existence of a large pH-buffering capacity due to isocitricacid in the vacuole allows the accumulation of a large amountof malic acid during the diurnal CAM rhythm. (Received February 12, 1992; Accepted July 10, 1992)  相似文献   

8.
We found that the amyloid peptide A(1-42) is capable of interacting with membrane and forming heterogeneous ion channels in the absence of any added Cu2+ or biological redox agents that have been reported to mediate A(1-42) toxicity. The A(1-42)-formed cation channel was inhibited by Cu2+ in cis solution ([Cu2+]cis) in a voltage- and concentration-dependent manner between 0 and 250 µM. The [Cu2+]cis-induced channel inhibition is fully reversible at low concentrations between 50 and 100 µM [Cu2+]cis and partially reversible at 250 µM [Cu2+]cis. The inhibitory effects of [Cu2+]cis between 50 and 250 µM on the channel could not be reversed with addition of Cu2+-chelating agent clioquinol (CQ) at concentrations between 64 and 384 µM applied to the cis chamber. The effects of 200-250 µM [Cu2+]cis on the burst and intraburst kinetic parameters were not fully reversible with either wash or 128 µM [CQ]cis. The kinetic analysis of the data indicate that Cu2+-induced inhibition was mediated via both desensitization and an open channel block mechanism and that Cu2+ binds to the histidine residues located at the mouth of the channel. It is proposed that the Cu2+-binding site of the A(1-42)-formed channels is modulated with Cu2+ in a similar way to those of channels formed with the prion protein fragment PrP(106-126), suggesting a possible common mechanism for Cu2+ modulation of A and PrP channel proteins linked to neurodegenerative diseases. neurodegenerative diseases; transitional metals; ion channel pathologies; membrane injuries; calcium homeostasis  相似文献   

9.
Theactin-binding proteins dystrophin and -actinin are members of afamily of actin-binding proteins that may link the cytoskeleton tomembrane proteins such as ion channels. Previous work demonstrated thatthe activity of Ca2+ channels can be regulated by agentsthat disrupt or stabilize the cytoskeleton. In the present study, weemployed immunohistochemical and electrophysiological techniques toinvestigate the potential regulation of cardiac L-type Ca2+channel activity by dystrophin and -actinin in cardiac myocytes andin heterologous cells. Both actin-binding proteins were found tocolocalize with the Ca2+ channel in mouse cardiac myocytesand to modulate channel function. Inactivation of the Ca2+channel in cardiac myocytes from mice lacking dystrophin(mdx mice) was reduced compared with that in wild-typemyocytes, voltage dependence of activation was shifted by 5 mV to morepositive potentials, and stimulation by the -adrenergic pathway andthe dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle,but not nonmuscle, forms of -actinin was also found to reduceinactivation. As might be predicted from a reduction ofCa2+ channel inactivation, a prolonging of the mouseelectrocardiogram QT was observed in mdx mice. These resultssuggest a combined role for dystrophin and -actinin in regulatingthe activity of the cardiac L-type Ca2+ channel and apotential mechanism for cardiac dysfunction in Duchenne and Beckermuscular dystrophies.

  相似文献   

10.
The uptake and efflux of Rb+ by membrane vesicles isolated fromshoots of the halophyte Suaeda maritima have been investigated.Uptake came to an apparent equilibrium after 1 h and the initialrate of uptake was considerably slower than that reported forbacterial membrane vesicles Additions of ATP reduced both Rb+uptake and the half-time for loss in efflux experiments, althoughthis effect was not specific for ATP and probably was not associatedwith energy transfer The permeability coefficient for Rb+ wascalculated to be between 0 1 and 0 3 x 10–2 cm s–1.The value of membrane vesicles in ion transport studies in plantsis discussed. Suaeda maritima, seablite, halophyte, membrane vesicles, ion transport, rubidium  相似文献   

11.
Thecharacteristics of L-lactic acid transport across thetrophoblast basal membrane were investigated and compared with those across the brush-border membrane by using membrane vesicles isolated from human placenta. The uptake ofL-[14C]lactic acid into basal membranevesicles was Na+ independent, and an uphill transport wasobserved in the presence of a pH gradient([H+]out > [H+]in).L-[14C]lactic acid uptake exhibitedsaturation kinetics with a Km value of 5.89 ± 0.68 mM in the presence of a pH gradient.p-Chloromercuribenzenesulfonate and-cyano-4-hydroxycinnamate inhibited the initial uptake, whereas phloretin or 4,4'-diisothiocyanostilbene-2,2'-disulfonate did not.Mono- and dicarboxylic acids suppressed the initial uptake. Inconclusion, L-lactic acid transport in the basal membraneis H+ dependent and Na+ independent, as is alsothe case for the brush-border membrane transport, and itscharacteristics resemble those of monocarboxylic acid transporters.However, there were several differences in the effects of inhibitorsbetween basal and brush-border membrane vesicles, suggesting that thetransporter(s) involved in L-lactic acid transport in thebasal membrane of placental trophoblast may differ from those in thebrush-border membrane.

  相似文献   

12.
Previous studies have shown that murine portal vein myocytes express ether-à-go-go related genes (ERGs) and exhibit distinctive currents when recorded under symmetrical K+ conditions. The aim of the present study was to characterize ERG channel currents evoked from a negative holding potential under conditions more pertinent to a physiological scenario to assess the possible functional impact of this conductance. Currents were recorded with ruptured or perforated patch variants of the whole cell technique from a holding potential of –60 mV. Application of three structurally distinct and selective ERG channel blockers, E-4031, dofetilide, and the peptide toxin BeKM-1, all inhibited a significant proportion of the outward current and abolished inward currents with distinctive "hooked" kinetics recorded on repolarization. Dofetilide-sensitive currents at negative potentials evoked by depolarization to +40 mV had a voltage-dependent time to peak and rate of decay characteristic of ERG channels. Application of the novel ERG channel activator PD-118057 (1–10 µM) markedly enhanced the hooked inward currents evoked by membrane depolarization and hyperpolarized the resting membrane potential recorded by current clamp and the perforated patch configuration by 20 mV. In contrast, ERG channel blockade by dofetilide (1 µM) depolarized the resting membrane potential by 8 mV. These data are the first record of ERG channel currents in smooth muscle cells under quasi-physiological conditions that suggest that ERG channels contribute to the resting membrane potential in these cells. vascular smooth muscle; voltage-dependent K+ current; membrane excitability  相似文献   

13.
Cell suspension cultures of Corydalis sempervirens have provenideal for the study of fusicoccin action [Schulz et al. (1990)Planta 183: 83] and express the fusicoccin-binding protein aswell as a plasma membrane H+-ATPase which is activated by thefungal toxin. Microsomal vesicles prepared from these cellsaccumulate Ca2+ in the presence of Mg-ATP. The protonophorecar-bonylcyanide m-chlorophenylhydrazone did not inhibit theMg-ATP dependent Ca2+-transport into the vesicles. This processis thus due to the activity of at least one primary active,ATP-driven, Ca2+-pump. The enzyme was characterized in detail.It has a pH optimum of 7.2, an apparent Km of 0.3 mu (ATP),12pm (Ca2+), accepts ATP>ITP GTP>CTP UTP, and is strongly(Ki, app 0.75 µmM) inhibited by erythrosine B but lessso (Ki, app 95 µM) by or-thovanadate. These characteristicsare typical for the plasma membrane Ca2+-ATPase characterizedfrom differentiated tissues [Graf and Weiler (1990) Physiol.Plant. 75: 634]. Fusicoccin activates the erythrosine-sensitiveCa2+-pump by lowering its Km for ATP, when added to living cellsprior to tissue homogenization. Thus, fusicoccin appears toactivate at least two ion-translocating ATPases in one and thesame tissue, suggesting that the toxin's mechanism of actionis complex and not restricted to activation of the H+-ATPase.FC has no effect when administered to microsomes. The microsomalenzyme was solubilized and reconstituted into asolec-tin liposomesin functional form. The reconstituted, erythrosine sensitiveCa2+-ATPase was insensitive to fusicoccin. Thus, componentsessential for toxin action are either lost or inactivated duringsubcellular fractionation. It is likely that FC action requiressoluble components. (Received April 22, 1991; Accepted July 24, 1991)  相似文献   

14.
H+ transport in the collecting duct is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE fusion complexes through the H3 domain; only syntaxin 1A, through its H3 domain, also binds H+-ATPase. This raised the possibility that there are separate binding sites within the H3 domain of syntaxin 1A for H+-ATPase and for SNARE proteins. A series of truncations in the H3 domain of syntaxin 1A were made and expressed as glutathione S-transferase (GST) fusion proteins. We determined the amount of H+-ATPase and SNARE proteins in rat kidney homogenate that complexed with GST-syntaxin molecules. Full-length syntaxin isoforms and syntaxin-1AC [amino acids (aa) 1–264] formed complexes with H+-ATPase and SNAP23 and vesicle-associated membrane polypeptide (VAMP). A cassette within the H3 portion was found that bound H+-ATPase (aa 235–264) and another that bound SNAP23 and VAMP (aa 190–234) to an equivalent degree as full-length syntaxin. However, the aa 235–264 cassette alone without the SNARE N (aa 1–160) does not bind but requires ligation to the SNARE N to bind H+-ATPase. When this chimerical construct was transected into inner medullary collecting duct cells it inhibited intracellular pH recovery, an index of H+-ATPase mediated secretion. We conclude that within the H3 domain of syntaxin 1A is a unique cassette that participates in the binding of the H+-ATPase to the apical membrane and confers specificity of syntaxin 1A in the process of H+-ATPase exocytosis. soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins; exocytosis; H++ transport  相似文献   

15.
Several treatments were investigated in an attempt to increasethe proportion of vanadate-sensitive proton pumping activityderived from membrane fractions of Ricinus cotyledons. The mostsuccessful procedure involved KI treatment of the microsomalfraction followed by solubilization with 1.25% (w/v) octylglucosideand reconstitution into phosopholipid liposomes. KI treatmentof the microsomal fraction resulted in an increase in the ATPasesensitivity to vanadate. Reconstitution was carried out by adilution method and the existence of ATP-driven H+-transportacross the proteoliposomes was demonstrated by quinacrine fluorescencequenching. The quenching was gramicidin reversible and stronglyinhibited by vanadate, ER B and PCMBS. Less inhibition was observedin the presence of NEM. Fusicoccin and sucrose did not havemarked effects on H+ -transport. Key words: ATPase, proton pumping, KI-treatment, solubilization, reconstitution, Ricinus communis  相似文献   

16.
cAMP-sensitive endocytic trafficking in A6 epithelia   总被引:3,自引:0,他引:3  
Blocker-induced noise analysis and laser scanning confocalmicroscopy were used to test the idea that cAMP-mediated vesicle exocytosis/endocytosis may be a mechanism for regulation of functional epithelial Na+ channels (ENaCs) at apical membranes of A6epithelia. After forskolin stimulation of Na+ transport andlabeling apical membranes with the fluorescent dyeN-(3-triethylammoniumpropyl)4-(6-4 diethylaminophenyl)hexatrienyl pyridinium dibromide (FM 4-64), ENaC densities(NT) decreased exponentially (time constant~20 min) from mean values of 320 to 98 channels/cell within 55 minduring washout of forskolin. Two populations of apical membrane-labeledvesicles appeared in the cytosol within 55 min, reaching mean valuesnear 18 vesicles/cell, compared with five vesicles per cell in control,unstimulated tissues. The majority of cAMP-dependent endocytosedvesicles remained within a few micrometers of the apical membranes forthe duration of the experiments. A minority of vesicles migrated to >5µm below the apical membrane. Because steady states require identicalrates of endocytosis and exocytosis, and because forskolin increased endocytic rates by fivefold or more, cAMP/protein kinase A acts kinetically not only to increase rates of cycling of vesicles at theapical membranes, but also principally to increase exocytic rates.These observations are consistent with and support, but do not prove,that vesicle trafficking is a mechanism for cAMP-mediated regulation ofapical membrane channel densities in A6 epithelia.

  相似文献   

17.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

18.
Cell-attached and cell-free configurations of the patch-clamptechnique were used to investigate the conductive properties andregulation of the major K+channels in the basolateral membrane of outer hair cells freshly isolated from the guinea pig cochlea. There were two majorvoltage-dependent K+ channels. ACa2+-activatedK+ channel with a high conductance(220 pS,PK/PNa = 8) was found in almost 20% of the patches. The inside-out activityof the channel was increased by depolarizations above 0 mV andincreasing the intracellular Ca2+concentration. External ATP or adenosine did not alter thecell-attached activity of the channel. The open probability of theexcised channel remained stable for several minutes without rundown andwas not altered by the catalytic subunit of protein kinase A (PKA)applied internally. The most frequentK+ channel had a low conductanceand a small outward rectification in symmetricalK+ conditions (10 pS for inwardcurrents and 20 pS for outward currents, PK/PNa = 28). It was found significantly more frequently in cell-attached andinside-out patches when the pipette contained 100 µM acetylcholine. It was not sensitive to internalCa2+, was inhibited by4-aminopyridine, was activated by depolarization above 30 mV,and exhibited a rundown after excision. It also had a slow inactivationon ensemble-averaged sweeps in response to depolarizing pulses. Thecell-attached activity of the channel was increased when adenosine wassuperfused outside the pipette. This effect also occurred with permeantanalogs of cAMP and internally applied catalytic subunit of PKA. Bothchannels could control the cell membrane voltage of outer hair cells.

  相似文献   

19.
Microsomal membranes from rye (Secale cereale L.) roots wereseparated by isopycnic sucrose density gradient centrifugation.The ion channels present in gradient fractions were assayedby reconstitution into planar 1-palmitoyl-2-oleoyl phosphatidylethanolaminebilayers (PLB) and the distributions of ion channel activitieswere compared with membrane markerenzyme activities. A numberof ion channel activities were observed and could be distinguishedon the combined bases of their conductance, selectivity, kineticsand pharmacology. A voltage-dependent maxi (498 pS) cation-channel,a voltage-dependent 199-pS cationchannel, 48-pS and 18-pS K+channels, and a 148-pS Cl channel (all unitary conductancesdetermined in asymmetrical cis trans 325:100mM KCl) colocalizedwith the plasma membrane marker-enzyme, vanadatesensitive ATPase.A weakly K +-selective (108 pS) channel, a 1249-pS cation-channeland a 98-pS K + channel colocalized with the tonoplast markerenzyme,nitrate-sensitive ATPase. A 706-pS K+ channel colocalized withthe expected distribution of intact plastids and a 38-pS Clchannel colocalized with either plastid or ER membranes. Themembrane location of several other channels including a hypervoltage-sensitivemaxi (497 pS) cation-channel, a 270-pS K+ channel, an 8-pS K+channel and a 4-pS K+ channel was equivocal, but they were tentativelyassigned to the Golgi. Thus, the plasma membrane and tonoplastorigin of ion channels previously characterized following theincorporation of plasma membrane prepared by aqueous-polymertwo-phase partitioning or tonoplast derived from isolated vacuolesinto PLB was confirmed and the ion channel complement of previouslyunassayed membranes was defined. This demonstrates the usefulnessof PLB in identifying and characterizing ion channels from plantcell membranes, in particular, those of membranes which areinaccessible to patch-clamp electrodes. Key words: Chloride (Cl) channel, potassium (K+) channel, planar lipid bilayer, root, rye, Secale cerealeL.  相似文献   

20.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号