首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We do not know how many mutations are being produced in human populations by exposure to environmental mutagens. If these mutagens caused a persistent rise in mutation rates, then ultimately there would be a proportional increase in the frequency of a variety of genetic diseases, including those that are difficult to treat and that require life-long care of affected individuals. In contrast, modern medical practices are relaxing selection pressure selectively with respect to disease, leading to a gradual increase in the frequency of certain genetic and partly genetic diseases that can be effectively treated. The pattern of this increase would differ from condition to condition, depending upon the mode of inheritance and the extent to which selection is relaxed; except for some special cases, the anticipated increase would generally be slow. Additional economic burdens on future society and families imposed by relaxed selection would mainly involve expenditures for relatively inexpensive treatments, and not those for expensive life-long care. Moreover, individuals treated successfully can be expected to contribute productively to society. With education and counseling for those who survive serious dominant and X-linked disorders, and with the development of accurate, inexpensive prenatal diagnosis, the presumed dysgenic effects of relaxed selection could be balanced.  相似文献   

2.
Comprehensive genetic studies in which the genetic structure of a population is considered against the background of ecological factors, including environmental and social variables, often supply valuable information for the solution of a number of problems in human biology, including reproductive compensation and inbreeding depression. In the first section of this paper we consider the incidence of genetic diseases in Japan in reference to other populations. Some of the genetic disorders found elsewhere do not occur or are of lower frequencies in Japan. On the other hand, a number of genetic diseases occur at higher than usual frequencies, leading to an incidence of genetic disease of the order of about 1 per 100 in newborn Japanese. We next review the studies of consanguinity in Japan and report evidence of very high levels, ranging from 8.6% to 58.0%, for villages during the early part of the twentieth century. The rates are declining rapidly for the country but, because of traditional social values, inbreeding rates remain significant in many small villages. In the final section we consider the probable trends in the frequency of inbreeding on a worldwide basis and point out that frequencies of certain genetic diseases are likely to remain high and even increase in some societies because of various socially prescribed mating patterns.  相似文献   

3.
From investigations based on the human genome and the environmental genome programs, genetic basis for individual differences in response to environmental mutagens is being characterized. Inheritance of variant versions of certain polymorphic genes is frequently associated with the development of environmental disease, such as lung cancer from cigarette smoking. Inheritance of these alleles may also affect the quality of life such as longevity. Evidence in support of these possibilities is presented. It is obvious that through the understanding of susceptibility, more precise disease prevention strategies can be implemented which will not only reduce the disease burden but also improve the quality of life.  相似文献   

4.
This paper recapitulates the advances in the field of genetic risk estimation that have occurred during the past decade and using them as a basis, presents revised estimates of genetic risks of exposure to radiation. The advances include: (i) an upward revision of the estimates of incidence for Mendelian diseases (2.4% now versus 1.25% in 1993); (ii) the introduction of a conceptual change for calculating doubling doses; (iii) the elaboration of methods to estimate the mutation component (i.e. the relative increase in disease frequency per unit relative increase in mutation rate) and the use of the estimates obtained through these methods for assessing the impact of induced mutations on the incidence of Mendelian and chronic multifactorial diseases; (iv) the introduction of an additional factor called the "potential recoverability correction factor" in the risk equation to bridge the gap between radiation-induced mutations that have been recovered in mice and the risk of radiation-inducible genetic disease in human live births and (v) the introduction of the concept that the adverse effects of radiation-induced genetic damage are likely to be manifest predominantly as multi-system developmental abnormalities in the progeny.For all classes of genetic disease (except congenital abnormalities), the estimates of risk have been obtained using a doubling dose of 1 Gy. For a population exposed to low LET, chronic/ low dose irradiation, the current estimates for the first generation progeny are the following (all estimates per million live born progeny per Gy of parental irradiation): autosomal dominant and X-linked diseases, approximately 750-1500 cases; autosomal recessive, nearly zero and chronic multifactorial diseases, approximately 250-1200 cases. For congenital abnormalities, the estimate is approximately 2000 cases and is based on mouse data on developmental abnormalities. The total risk per Gy is of the order of approximately 3000-4700 cases which represent approximately 0.4-0.6% of the baseline frequency of these diseases (738,000 per million) in the population.  相似文献   

5.
Founder effect and genetic disease in Sottunga, Finland   总被引:2,自引:0,他引:2  
Pedigree data are analyzed in order to determine the factors responsible for the high frequencies of certain genetic disorders in an isolated Swedish-speaking population of Finland's A land archipelago. The founders of Sottunga are identified, and the genetic contributions of each founder to descending birth cohorts are estimated. Founders born before 1700 have far more descendants in the contemporary gene pool than do more recent founders. However, because of migration and depopulation since 1900, the expected genetic contributions of the early founders to the present-day population are similar to those of later founders. A descendant in the contemporary population has a 2% chance of having inherited a particular gene from the founder who makes the largest single contribution to the gene pool. This corresponds approximately to a 2% probability of inheriting an autosomal dominant disease gene from this founder. Given an average inbreeding coefficient of 0.0016, the probability of inheriting two recessive disease genes from this founder is 0.000032. The incidence of autosomal dominant von Willebrand disease in Sottunga is greater than 10% while that of autosomal recessive tapetoretinal disease is 1.5%. We conclude, therefore, that the high frequencies of these diseases are not due to the disproportionate genetic contribution of one or a few particular founders. It is more likely that these disease genes occurred in high frequency in the initial population or were introduced repeatedly through time.  相似文献   

6.
Since it is not always possible to reduce human exposure to mutagens, attempts have been directed to identify potential antimutagens and anticarcinogens for use in protecting the population against environmental disease. The purpose of this paper is to provide the reader with information about the antimutagenic and anticarcinogenic potentials of some dietary constituents and foods widely consumed in Brazil, and to reinforce diet as a key factor in determining genomic stability and preventing human diseases. In this report, we have summarized data that show interactive effects between some dietary components and specific chemical mutagens or carcinogens using in vitro and in vivo short- or medium-term assays. The summary indicates that certain dietary compounds may be useful agents for disease prevention.  相似文献   

7.
The emergence of drug-resistant microorganisms is an important medical and social problem. Drug-resistant microorganisms are thought to grow selectively in the presence of antibiotics. Most clinically isolated drug-resistant microorganisms have mutations in the target genes for the drugs. While any of the many mutagens in the environment may cause such genetic mutations, no reports have yet described whether these mutagens can confer drug resistance to clinically important microorganisms. We investigated how environmental mutagens might be implicated in acquired resistance to antibiotics in clinically important microorganisms, which causes human diseases. We selected mutagens found in the environment, in cigarette smoke, or in drugs, and then exposed Pseudomonas aeruginosa to them. After exposure, the incidence of rifampicin- and ciprofloxacin-resistant P. aeruginosa strains markedly increased, and we found mutations in genes for the antibiotic-target molecule. These mutations were similar to those found in drug-resistant microorganisms isolated from clinical samples. Our findings show that environmental mutagens, and an anticancer drug, are capable of inducing drug-resistant P. aeruginosa similar to strains found in clinical settings.  相似文献   

8.
The detection of changes in mutation rate in human populations remains extremely difficult. Thus estimation of genetic hazards of mutagens to man depends on extrapolation from experimental systems. Germ cells of animals show complex variations in sensitivity to mutagenic effects. Some agents predominantly affect stem cells or other immature germ cells, whereas others mainly affect later germ cell stages. Dose-response relations also vary both with the agent and with the stage or sex of germ cell treated. In man, in addition to single-gene defects and chromosome anomalies, conditions of complex or uncertain inheritance, such as congenital malformations, are clinically important. Genetic theory leaves unclear whether the incidence of these would be affected by a change in mutation rate. Recent research has shown that in mice the incidence of malformations is increased by exposure of the parents to mutagens, but the effect is small. Chromosomal non-disjunction is also clinically important. Again, recent research shows that its frequency can be changed by mutagens, but the effects vary with germ-cell stage. Thus, further research is needed to elucidate the relative contributions of different environmental mutagens to human genetic disease.  相似文献   

9.
Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the same population in which mutation frequency is evaluated. We provide the statistical basis for evaluating the incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated. Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD), the two most frequent autosomal recessive disease in Caucasian populations and the two most frequent mutations (delta F508 and G985) that occur on these disease allele-bearing chromosomes, we show that, with 50-100 patients and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to rare autosomal dominant diseases for which disease-specific mutations are found.  相似文献   

10.
Mosaicism is defined as the coexistence of cells with different genetic composition within an individual, caused by postzygotic somatic mutation. Although somatic mosaicism for chromosomal abnormalities is a well-established cause of developmental and somatic disorders and has also been detected in different tissues, its frequency and extent in the adult normal population are still unknown. We provide here a genome-wide survey of mosaic genomic variation obtained by analyzing Illumina 1M SNP array data from blood or buccal DNA samples of 1991 adult individuals from the Spanish Bladder Cancer/EPICURO genome-wide association study. We found mosaic abnormalities in autosomes in 1.7% of samples, including 23 segmental uniparental disomies, 8 complete trisomies, and 11 large (1.5–37 Mb) copy-number variants. Alterations were observed across the different autosomes with recurrent events in chromosomes 9 and 20. No case-control differences were found in the frequency of events or the percentage of cells affected, thus indicating that most rearrangements found are not central to the development of bladder cancer. However, five out of six events tested were detected in both blood and bladder tissue from the same individual, indicating an early developmental origin. The high cellular frequency of the anomalies detected and their presence in normal adult individuals suggest that this type of mosaicism is a widespread phenomenon in the human genome. Somatic mosaicism should be considered in the expanding repertoire of inter- and intraindividual genetic variation, some of which may cause somatic human diseases but also contribute to modifying inherited disorders and/or late-onset multifactorial traits.  相似文献   

11.
The data about the incidence of hereditary diseases and those with genetic predispositions which received after subtotal medico-genetical examination of the inhabitants of 4 villages in the Urgut district of the Samarkand province are presented. 848 inhabitants (348 adults and 464 children aged 7--16 years) are examined. The nosological profile of the morbidity and spectrum of the Mendelian diseases in the population is evaluated. The integrative estimate of load of the detrimental (non-lethal) genes is about 0.166 per individual.  相似文献   

12.
Affiliative social motivation and behavior, that is, sociability that includes attachment, prosocial behavior (sharing, caring and helping) and empathy (the ability to understand and share the feelings of others), has high variability in the human population, with a portion of people outside of the normal range. While psychiatric disorders and autism spectrum disorders are typically associated with a deficit in social behavior, the opposite trait of hypersociability and indiscriminate friendliness are exhibited by individual with specific neurodevelopmental disorders and following early adverse care. Here we discuss both genetic and environmental factors that cause or increase the risk for developing pathological hypersociability from human to rodent models.  相似文献   

13.
遗传易感性是指基于个人遗传背景的多基因遗传病发病风险,即来源于父母一方或双方的特定遗传变异在某些情况下会诱发疾病。在特定疾病的发病机制中某些高外显率的遗传变异发挥重要作用,此类疾病通过患病家系分析即可定位疾病相关遗传变异;但另一些低外显率变异的作用则不明显,需要大规模患病人群分析来解析遗传机制。近年来,随着二代测序和多组学分析技术的发展和基因组数据的大量积累,癌症、代谢性疾病、心脑血管疾病和精神疾病等疾病遗传易感性研究中取得了显著进展,为疾病的早期筛查和诊断治疗提供了参考。  相似文献   

14.
The objective of this work was to investigate the interactions between the level of concentrations of Ca, V Cr, Mn, Fe, Ni, Cu, Zn, As and Pb in potable water, soil, vegetation and school children hair and disease incidences of neoplasms, diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism, endocrine, nutritional and metabolic diseases, mental and behavioral disorders and diseases of the circulatory system on the population groups which are homogeneously exposed to the environmental conditions. It was found that potable water among the other investigated aspects of the physical environment has the greatest impact on the public health. The environment-disease incidence interactions have been found for all investigated diseases groups. The results reported here emphasize the importance of the observation of the mutual effects of the environmental variables on the human health for the identification of their synergetic as well as antagonistic effects.  相似文献   

15.
Genetic disorders in children and young adults: a population study.   总被引:16,自引:3,他引:13       下载免费PDF全文
The data base of an ongoing population-based registry with multiple sources of ascertainment was used to estimate the present population load from genetic disease in more than 1 million consecutive live births. It was found that, before approximately age 25 years, greater than or equal to 53/1,000 live-born individuals can be expected to have diseases with an important genetic component. This total was composed of single-gene disorders (3.6/1,000), consisting of autosomal dominant (1.4/1,000), autosomal recessive (1.7/1,000), and X-linked recessive disorders (0.5/1,000). Chromosomal anomalies accounted for 1.8/1,000, multifactorial disorders (including those present at birth and those of onset before age 25 years) accounted for 46.4/1,000, and cases of genetic etiology in which the precise mechanism was not identified accounted for 1.2/1,000. Previous studies have usually considered all congenital anomalies (ICD 740-759) as part of the genetic load, but only those judged to fit into one of the above categories were included in the present study. Data for congenital anomalies are therefore also presented separately, to facilitate comparison with earlier studies. If all congenital anomalies are considered as part of the genetic load, then greater than or equal to 79/1,000 live-born individuals have been identified as having one or other genetic disorder before approximately age 25 years. These new data represent a better estimate of the genetic load in the population than do previous studies.  相似文献   

16.
Results of continuing studies indicate that the mouse zygote and two-cell embryo stages are a window of susceptibility in the experimental induction of congenital anomalies with certain mutagenic agents. The mechanisms by which the mutagens initiate the pathogenesis of these developmental defects are not known. However, in certain cases there is evidence that a nonconventional, perhaps epigenetic, mechanism is involved. Detailed characterization of the spectrum of anomalies induced and comparison of responses at the various stages exposed allowed classification of the mutagens generally into two groups. One group is characterized by being effective only in the early stages of zygote development and capable of producing a relatively high incidence of fetal death and hydrops. The other group affects all of the zygote stages studied as well as the two cell-embryo, but does not increase the incidence of fetal death and hydrops. Except for hydrops, chemicals in the two groups do not differ in terms of the types of anomalies present among malformed live fetuses, which bear a resemblance to a subset of common, sporadic human developmental anomalies that are of unknown etiology. This similarity raises the possibility that certain human developmental defects may have their origins in events that happen in the zygote and early pre-implantation stages.  相似文献   

17.
It has been nearly a decade since the completion of two large-scale chemical mutagenesis screens in zebrafish, and two years since the completion of a large-scale insertional mutagenesis. In this article, we use the accumulated data from these screens to compare the efficiency of each mutagen to isolate mutants and to identify mutated genes, and argue that the two mutagens target the same set of genes. We then review how both forward genetic screens and reverse genetic techniques, such as morpholinos and TILLING, and transgenics are being used to develop models of human disease.  相似文献   

18.
Genetic risks of radiation exposure of humans are generally expressed as expected increases in the frequencies of genetic diseases over those that occur naturally in the population as a result of spontaneous mutations. Since human data on radiation-induced germ cell mutations and genetic diseases remain scanty, the rates derived from the induced frequencies of mutations in mouse genes are used for this purpose. Such an extrapolation from mouse data to the risk of genetic diseases will be valid only if the average rates of inducible mutations in human genes of interest and the average rates of induced mutations in mice are similar. Advances in knowledge of human genetic diseases and in molecular studies of radiation-induced mutations in experimental systems now question the validity of the above extrapolation. In fact, they (i) support the view that only in a limited number of genes in the human genome, induced mutations may be compatible with viability and hence recoverable in live births and (ii) suggest that the average rate of induced mutations in human genes of interest from the disease point of view will be lower than that assumed from mouse results. Since, at present, there is no alternative to the use of mouse data on induced mutation rates, there is a need to bridge the gap between these and the risk of potentially inducible genetic diseases in human live births.In this paper, we advance the concept of what we refer to here as "the potential recoverability correction factor" (PRCF) to bridge the above gap in risk estimation and present a method to estimate PRCF. In developing the concept of PRCF, we first used the available information on radiation-induced mutations recovered in experimental studies to define some criteria for assessing potential recoverability of induced mutations and then applied these to human genes on a gene-by-gene basis. The analysis permitted us to estimate unweighted PRCFs (i.e. the fraction of genes among the total studied that might contribute to recoverable induced mutations) and weighted PRCFs (i.e. PRCFs weighted by the incidences of the respective diseases). The estimates are: 0.15 (weighted) to 0.30 (unweighted) for autosomal dominant and X-linked diseases and 0.02 (weighted) to 0.09 (unweighted) for chronic multifactorial diseases. The PRCF calculations are unnecessary for autosomal recessive diseases since the risks projected for the first few generations even without using PRCFs are already very small. For congenital abnormalities, PRCFs cannot be reliably estimated.With the incorporation of PRCF into the equation used for predicting risk, the risk per unit dose becomes the product of four quantities (risk per unit dose=Px(1/DD)xMCxPRCF) where P is the baseline frequency of the genetic disease, 1/DD is the relative mutation risk per unit dose, MC is the mutation component and PRCF is the disease-class-specific potential recoverability correction factor instead of the first three (as has been the case thus far). Since PRCF is a fraction, it is obvious that the estimate of risk obtained with the revised risk equation will be smaller than previously calculated values.  相似文献   

19.
Recent studies have implicated folic acid as an important determinant of normal human growth, development, and function. Insufficient folate levels appear to be a risk factor for neural tube defects (NTD), as well as for several chronic diseases of adulthood. However, relatively little is known about the factors that influence folate status in the general population. To estimate the relative contribution of genetic and nongenetic factors to variation in folate, we have evaluated red blood cell (RBC) folate levels in 440 pairs of MZ twins and in 331 pairs of DZ twins. The data were best described by a model in which 46% of the variance in RBC folate was attributable to additive genetic effects, 16% of the variance was due to measured phenotypic covariates, and 38% of the variance was due to random environmental effects. Moreover, the correlations for RBC folate in MZ co-twins (r = .46) and in repeat measures from the same individual (r = .51) were very similar, indicating that virtually all repeatable variation in RBC folate is attributable to genetic factors. On the basis of these results, it would seem reasonable to initiate a search for the specific genes that influence RBC folate levels in the general population. Such genes ultimately may be used to identify individuals at increased risk for NTD and other folate-related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号