首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Aho  V Tate    H Boedtker 《Nucleic acids research》1984,12(15):6117-6125
During the fine structural analysis of the 5' end of the 38 kb chicken pro alpha 2(I) collagen gene, we failed to locate an exon, only 11 bp in size, which had been predicted from the DNA sequence analysis of a cDNA clone complementary to the 5' end of the pro alpha 2(I) collagen mRNA (1). We know report the location of this 11 bp exon, exon 2, at the 5' end of a 180 bp Pst I fragment, 1900 bp 3' to exon 1 and 600 bp 5' to exon 3. Its sequence, ATGTGAGTGAG, is highly unusual in that it contains two overlapping consensus donor splice sequences. Moreover, it is flanked by two overlapping donor splice sequences but only one of the four splice sequences is actually spliced (1). The first half of intron 1 also has an unusual sequence: it is 68% GC, contains 88 CpG dinucleotides and 11 Hpa II sites. The second half is more like other intron sequences in the collagen gene with a GC content of 41%, 19 CpG, and no Hpa II sites. However it contains two sequences with 7 and 9 bp homology to the 14 bp SV40 enhancer core sequence. It is suggested that some part of intron 1 may be involved in regulation.  相似文献   

3.
Human and mosquito fixed chromosomes were digested with restriction endonucleases that are inhibited by the presence of 5-methylcytosine in their restriction sites (Hha I, Hin PI, Hpa II), and with endonucleases for which cleavage is less dependent on the state of methylation (Taq I, Msp I). Methylation-dependent enzymes extracted low DNA amounts from human chromosomes, while methylation-independent enzymes extracted moderate to high amounts of DNA. After DNA demethylation with 5-azacytidine the isoschizomers Hpa II (methylation-dependent) and Msp I (methylation-independent) extracted 12-fold and 1.4-fold amounts of DNA from human chromosomes, respectively. These findings indicate that human DNA has a high concentration of Hpa II and Msp I restriction sites (CCGG), and that the internal C of this sequence is methylated in most cases, while the external cytosine is methylated less often. All the enzymes tested released moderate amounts of DNA from mosquito chromosomes whether or not the DNA was demethylated with 5-azacytidine. Hpa II induced banding in the centromere chromosome regions. After demethylation with 5-azacytidine this banding disappeared. Mosquito DNA has therefore, moderate to high frequencies of nonmethylated CpG duplets. The only exception is the centromeric DNA, in which the high levels of C methylation present produce cleavage by Hpa II and the appearance of banding. Centromere regions of human chromosomes 1 have a moderately low concentration of Hpa II-Msp I restriction sites.  相似文献   

4.
5.
6.
7.
A possible structure for calf satellite DNA I.   总被引:7,自引:6,他引:1       下载免费PDF全文
Calf satellite DNA I (p = 1.715) has been hydrolysed by a number or restriction endonucleases. It consists of a repeating unit of 1460 nucleotide pairs within which the sites of Eco R II Mbo I, Sac I, Alu I, Ava II and Hha I were localised in comparison with those of Eco R I and Hind II. The distribution of the Hpa II, Sac I, Hha I, Hinf I and Mbo II sites within calf satellite DNA I, as well as that of several restriction endonuclease sites within calf satellite DNA III (p = 1.705) allowed me to define subsatellite fractions. Furthermore, some of the sites of the CpG containing restriction enzymes Hpa II and Hha I are lacking. The possible implications of these results are discussed.  相似文献   

8.
9.
In DNA of the dinoflagellate Crypthecodinium cohnii, 38% of the thymine is replaced by the modified base 5-hydroxymethyluracil, and approximately 3% of the cytosine is replaced by 5-methylcytosine. Both of the modified bases are non-randomly distributed in the DNA. Determinations of 3' nearest neighbors show that HOMeU is preferentially located in the dinucleotides HOMeUpA and HOMeUpC. Pyrimidine tract analysis shows that HOMeU is also greatly enriched in the trinucleotide purine-HOMeU-purine. As in other eukaryotes, methylcytosine in C. cohnii DNA occurs predominantly in the dinucleotide MeCpG. By analysis of restriction endonuclease digestion patterns of C. cohnii total DNA and ribosomal DNA, we have found that the central CpG dinucleotides in the sites for the enzymes Hpa II (CCGG) and Hha I (GCGC) are extensively methylated in both total DNA and ribosomal DNA. Results of digestion with Ava I, however, indicated that not all CpG dinucleotides in the sequence CCTCGGAG are methylated in C. cohnii DNA.  相似文献   

10.
It has been shown that the extent of methylation of cytosine in vertebrate DNA is inversely correlated with gene expression. We studied cytosine methylation in and around the homologous human growth hormone (GH) and chorionic somatomammotropin (CS) genes to determine if these genes are undermethylated in DNA from tissues in which they are expressed (pituitary and placenta, respectively) compared to other tissues. Hpa II and Hha I (which cleave only unmethylated 5' CCGG 3' and 5' GCGC 3' respectively) and Msp I (which cleaves CCGG and CmeCGG) were used to digest DNA samples followed by gel electrophoresis, Southern transfer and hybridization with a GH cDNA probe. The extent of methylation of Hpa II and Hha I sites in the GH and CS genes was leukocyte much greater than pituitary greater than placenta = hydatidiform mole. Taken as a whole, our data support the hypothesis that undermethylation is a necessary but not sufficient condition for gene expression since placental and pituitary DNAs are less methylated than leukocyte DNA in this region. However, the correlation between gene expression and undermethylation is imperfect since (1) hydatiform mole DNA has a very similar methylation pattern compared to placental DNA even though moles make little or no CS and (2) the level of methylation of the GH gene compared to the CS gene does not vary in a tissue-specific manner.  相似文献   

11.
12.
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.  相似文献   

13.
14.
15.
In mammalians, demethylation of specific promoter regions often correlates with gene activation; inversely, dense methylation of CpG islands leads to gene silencing, probably mediated by methyl-CpG binding proteins. In cell lines and cancers, inhibition of tissue-specific genes and tumor suppressor genes expression seems to be related to such hypermethylation. The 5' end of the breast cancer predisposition gene BRCA1 is embedded in a large CpG island of approximately 2.7 kb in length. In human sporadic breast cancers, the down-regulation of BRCA1 does not seem to be related to BRCA1 gene alterations. Southern blot analysis and the bisulfite sequencing method indicate that the BRCA1 CpG island is regionally methylated in all human tissues analyzed and unmethylated in the gametes, suggesting a role for DNA methylation in the control of gene expression. We have therefore investigated the potential role of methyl-CpG binding proteins in the regulation of BRCA1 gene expression. In vitro, partial methylation of constructs containing this region strongly inhibits gene expression in the presence of MeCP2 protein. Moreover, in the five human cell lines analyzed, chemically induced hypomethylation is associated with BRCA1 gene activation. These data suggest that methyl-CpG binding proteins might be associated with the control of BRCA1 gene expression and that methyl-DNA binding proteins may participate in the regulation of gene expression in mammalian cells.  相似文献   

16.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

17.
To determine the methylation pattern of c-Ha-ras oncogene in prostatic tissue and to identify possible changes of methylation associated with cancer, high molecular weight DNA was extracted from 7 normal and 6 carcinomatous human prostates. Analysis of the samples was performed by cleaving DNA with the restriction endonucleases Msp I, Hpa II and Cfo I, and by Southern hybridizing the DNA digests with the 32P-labelled c-Ha-ras (pT24-C3) probe. Several discrete fragments were obtained with Hpa II and Cfo I digestion while the Msp I pattern showed fewer and smaller bands. Therefore, c-Ha-ras appears to be partially methylated. While a considerable polymorphism of the sequence 5'-CCGG-3' was observed at several Msp I sites in all cases, no significant differences could be evidenced in the methylation patterns of normal and neoplastic prostatic DNA samples extracted and purified from each patient.  相似文献   

18.
Uteroplacental insufficiency causes intrauterine growth retardation (IUGR), which is associated with adult onset diseases such as hypertension. Previous studies demonstrate that growth retardation in humans and rats decreases glomeruli number; however, the molecular mechanisms responsible for this reduction are unknown. Apoptosis plays a key role in renal organogenesis. We therefore hypothesized that the in utero deprivation associated with uteroplacental insufficiency decreases glomeruli, increases apoptosis, and alters the mRNA levels of key apoptosis-related proteins in full-term IUGR kidneys. To prove this hypothesis, we induced asymmetric IUGR through bilateral uterine artery ligation of the pregnant rat. We found that uteroplacental insufficiency significantly reduced glomeruli number while increasing TUNEL staining and caspase-3 activity in the IUGR kidney. A significant decrease in Bcl-2 mRNA and a significant increase in Bax and p53 mRNA further characterized the IUGR kidney. Because altered p53 CpG methylation affects p53 expression, we analyzed p53 promoter CpG methylation using methylation-sensitive restriction enzymes and real-time PCR. Uteroplacental insufficiency specifically decreased CpG methylation of the renal p53 BstU I site promoter without affecting the Hha I or the Aci I sites. Uteroplacental insufficiency also induced a relative hypomethylation from exon 5 to exon 8, which was associated with deceased mRNA levels of DNMT1. We conclude that uteroplacental insufficiency alters p53 DNA CpG methylation, affects mRNA levels of key apoptosis-related proteins, increases renal apoptosis, and reduces glomeruli number in the IUGR kidney. We speculate that these changes represent mechanisms that contribute to the fetal origins of adult disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号