The phenomenon of extraordinary optical transmission (EOT) due to its advantages has been considered by researchers in various applications, and in recent years, many efforts have been made to engineer these structures to get the best possible response for desired applications. In this work, the optical properties of novel binary gold nanohole arrays are investigated theoretically. We engineered the optical response of the system by adjusting the ratio of contribution of surface plasmon polariton (SPP) to localized surface plasmon resonance (LSPR) through the manipulation of the geometrical properties. The changes in the topology of this nanohole array affected the intensity and the wavelength of transmission peaks. The sensitivity of the optical response to the refractive index was also investigated. The designed structure is a good candidate for use as a polarization-independent optical label-free sensor.
Optical extinction resonant properties of the silver rhombic plasmonic nanoparticles in visible regime were investigated by means of finite difference time domain method algorithm-based computational numerical calculation. Considering aspect ratio (a/b) of the x- and y-axes of the rhombic particles, the polarization in different angles of the incident light, and the index of the surrounding medium, we studied the extinction properties of a single rhombus. The simulation results show that there is only one clear resonance peak in the visible regime, and the corresponding plasmon mode is a dipolar plasmon mode. Along the direction of the light polarization, with the increase of the aspect ratio (a/b), red shift of the resonant peak occurs and the extinction efficiency increases accordingly. With the polarization angle varying from 0° to 90°, the resonance peaks show a small blue shift and the corresponding extinction efficiency varies slightly consequently. The tailoring ability of the resonance frequency is shown to be improved due to a unique interaction of local geometry with surface charge distributions. 相似文献
Plasmonics - Tip-enhanced Raman spectroscopy (TERS) has received much attention due to excellent spatial resolution and high detection sensitivity. However, its performance depends crucially on the... 相似文献
Nanohole arrays in metal films allow extraordinary optical transmission (EOT); the phenomenon is highly advantageous for biosensing applications. In this article, we theoretically investigate the performance of refractive index sensors, utilizing square and hexagonal arrays of nanoholes, that can monitor the spectral position of EOT signals. We present near- and far-field characteristics of the aperture arrays and investigate the influence of geometrical device parameters in detail. We numerically compare the refractive index sensitivities of the two lattice geometries and show that the hexagonal array supports larger figure-of-merit values due to its sharper EOT response. Furthermore, the presence of a thin dielectric film that covers the gold surface and mimics a biomolecular layer causes larger spectral shifts within the EOT resonance for the hexagonal array. We also investigate the dependence of the transmission responses on hole radius and demonstrate that hexagonal lattice is highly promising for applications demanding strong light transmission. 相似文献
Plasmonics - We report on a novel type of spaser which is based on the nonlinear optical Raman gain rather than stimulated emission. It consists of a plasmonic nanoantenna as the cavity and a... 相似文献
The plasmonic interaction between silver nano-cubes and a silver ground plane with and without a dielectric spacer is studied
for surface-enhanced Raman scattering (SERS) for rhodamine 6G (R6G) molecules absorbed onto the silver nano-cubes. Experimental
results show that the composite substrates made from silver nano-cubes and the silver ground plane produce a stronger SERS
signal than by the cubes alone, due to the plasmonic interaction between the cubes and the film. Numerical simulation is used
to verify the plasmonic enhancement of the composite substrate and is consistent with the experimental results. The lowest
concentration of R6G molecules which can be detected with the composite substrate is about 10−11 M with our setup. 相似文献
The optical properties of a compound structure with metallic nanoparticle and nanohole arrays are numerically investigated by the means of finite-difference time domain method. We report on the observation of multi-valleys in the reflection spectra due to the excitation of surface plasmon (SP) resonant modes of the compound structure. Simulation results show that multiple SP resonances consist of surface plasmon polaritons on the gold film, localized surface plasmons on the nanoparticles, and coupling mode between them. These findings are important for applications utilizing multiple surface plasmon resonances. 相似文献
Plasmonics - The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been... 相似文献
Plasmonics - We have studied the reflectance spectra of T-shape nanohole array in a layer of Photonic crystal (PhC) slab. Results show that light can be confined perfectly in the PhC slab at a... 相似文献
We investigated the plasmonic modes in a two-dimensional quasicrystalline array of metal nanoparticles. The polarization of the modes is in the array plane. A simplified eigen-decomposition method is presented with the help of rotational symmetry. Two kinds of anti-phase ring modes with radial and tangential polarizations are of highest spatial localizations among all of plasmonic modes. For the leaky characteristic of the anti-phase ring modes, the highest fidelity mode in the quasicrystalline array is found to be tangential polarized mode, whereas normal-to-plane polarized mode in the circular ring. The leaky characteristics and spatial localizations of other plasmonic modes are also studied, for example, collective vortex mode that may be a candidate to form negative responses in plasmonic device and collective radial mode that may be used to generate light sources with radial polarizations. 相似文献
We present a broadband plasmonic metamaterial absorber in the infrared region based on localized surface plasmon polaritons (LSPPs). The unit cell of the proposed metamaterial absorber consists of a multi-cavity structure, in which absorption resonances can be tuned independently through the modification of the width and shift of metallic walls. In order to avoid the degeneration between two contiguous resonances, which dramatically reduces the bandwidth, we introduce a zigzag design rule to arrange the cavities within a compact unit. Thus, the possible number of resonances is greatly increased, enabling an ultrabroadband absorption. A broadband absorber is demonstrated with only a few-layer structure and it also has an incident-angle-insensitive feature. Our results have potential applications in photovoltaic devices, emitters, sensors, and camouflage systems. 相似文献
Plasmonics - Making use of the tunability of the nanocomplex, we investigate the chiroptical properties of plasmonic hybrid nanostructures composed of a nanosphere (NS) and a twisted nanorod (NR)... 相似文献
Plasmonics - We numerically analyzed a simple and novel design of multi-broadband plasmonic absorber which consists of a planar array of thin gold square ring structures on dielectric/metal... 相似文献
A tunable high transmission optical bandpass filter based on a plasmonic hybrid nanostructure, composed of a periodic array of nanocircles and nanoholes combining two isolated waveguides is introduced in this paper. The presented design improves the coupling, which results in a higher transmission peak. To study the filtering operation, different topologies are investigated. The transmission properties and the resonance wavelengths are adjusted by sweeping various geometrical parameters. A multimode spectrum for each of the topologies is obtained. A tunable bandgap and bandwidth can be obtained by adjusting the refractive index of the periodic nanostructure. We have reached a maximum quality factor and a small full width at half-maximum bandwidth with the maximum transmission values greater than 80%. The advantages of the presented structures which include the benefits of both plasmonic and periodic nanostructures are tunability, high detection resolution, and integrability at the nanoscale for optical applications.
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET''s have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP''s generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper.Download video file.(57M, mov)相似文献
In this paper, a novel plasmonic filter with very high extinction ratio and low insertion loss is proposed based on the coherent coupled nano-cavity array in a metal–insulator–metal (MIM) waveguide. The coherent coupling interactions among nano-cavities are investigated with an analytical model which is derived based on the temporal coupled-mode theory and transfer-matrix method. The destructive interference of the surface plasmon polaritons coupled from the nano-cavities at the resonant wavelength is achieved by suitably designing the period of the cavity array, which may be used for increasing the extinction ratio of the filter based on the nano-cavity array in the MIM waveguide. A plasmonic filter with an extinction ratio higher than 60 dB and an insertion loss less than 1.0 dB is obtained by applying the destructive interference in the design of a six-rectangular-cavity array in an Ag–air–Ag waveguide. And the correctness of the design for the filter is verified by the results obtained with the finite-difference time-domain simulation technique. This work may provide useful schemes and approaches for realization of various wavelength-sensitive devices in plasmonic integrated circuits. 相似文献
We investigated theoretically the exciton–plasmon coupling effects on the population dynamics and the absorption properties of a hybrid nanosystem composed of a metal nanoparticle (MNP) and a V-type three-level semiconductor quantum dot (SQD), which are created by the interaction with the induced dipole moments in the SQD and the MNP, respectively. Excitons of the SQD and the plasmons of the MNP in such a hybrid nanosystem could be coupled strongly or weakly to demonstrate novel properties of the hybrid system. We also find that the gain happens in such a hybrid system, because of the coherent interaction between the SQD and the MNP. Our results show that the non-linear optical response of the hybrid nanosystem can be greatly enhanced or depressed due to the exciton–plasmon couplings. 相似文献
Plasmonics - In this work, we have performed a systematic investigation of the plasmon near-field effect on photoluminescence (PL) behavior of the annealed self-assembled gold nanostructured films.... 相似文献
Making a continuous metal film with near-unity transparency has received more and more attention in recent years because of its potential applications for various optoelectronic devices. Here, we theoretically show that a high tunable plasmon-induced transparency metal film structure can be performed by double continuous metal films inserted with a two-dimensional hexagonal lattice array of plasmonic nanopariticles. The proposed structure shows near-unity anti-reflection and intensively enhanced transmission via the cooperative effects of strong resonant near-field light input and output coupling by the plasmonic array and the excitation of surface electromagnetic waves of the metal films. The optical response can be efficiently mediated by varying the sizes of nanoparticles and the separated distance between the metal array and the metal films. With the merits of high transparency, sub-wavelength sizes and wholly retained metal characteristics including high conductivity via using the pure metallic materials, the structure proposed here suggests various potential applications in optoelectronic integrated circuits. 相似文献