首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In dark-grown Raphanus seedlings, most of the PAL activity is found in roots where it increases sigmoidally during organ development. In hypocotyls, the dark increase of enzyme activity is linear with time. In cotyledons and hooks, dark activity is very low and remains constant. After onset of continuous far-red irradiation, an activity increase is observed in all parts of the seedling. In cotyledons and hooks, the increase is followed by a decrease. This is comparable to light-induced PAL activity described in other materials. In roots and hypocotyls, the initial increase is not followed by a decrease. In dark-grown roots and hypocotyls PAL activity is correlated to fresh weight augmentation. In no part of the seedling could a correlation be found between light-induced PAL activity and anthocyanin formation.  相似文献   

2.
Rainer Sütfeld 《Planta》1982,156(6):536-540
An intensive accumulation of thiophene derivatives occurs during the first days of development in Tagetes seedlings. After that, the thiophene content (related to dry weight) decreases to reach low values until the twelfth day of growth. High performance liquid chromatography analyses performed on cotyledons, on hypocotyls, and on roots of normal-grown and of partly-etiolated seedlings showed that bithienylbutinen, the major compound in hypocotyls and roots, is accumulated earlier than the other thiophene derivatives. The synthesis of acetoxybutinylbithiophene seems to be light-induced. This compound is not found in cotyledons. Hydroxybutinylbithiophene is synthesized specifically in the roots, -terthiophene in cotyledons. The results obtained indicate a high intensity of thiophene metabolism in these particular organs during seedling development.  相似文献   

3.
4.
Polar transport of kinetin in tissues of radish   总被引:1,自引:1,他引:0       下载免费PDF全文
Polar transport of kinetin-8-14C occurred in segments of petioles, hypocotyls, and roots of radish (Raphanus sativus L.). The polarity was basipetal in petioles and hypocotyls and acropetal in roots. In segments excised from seedlings with fully expanded cotyledons, indole-3-acetic acid was required for polarity to develop. In hypocotyl segments isolated at this stage, basipetal and acropetal movements were equal during the first 12 hours of auxin treatment after which time acropetal movement declined. Pretreatment with auxin eliminated this delay in the appearance of polarity. In hypocotyl segments excised from seedlings with expanding cotyledons, exogenous auxin was unnecessary for polarity. Potassium cyanide abolished polarity at both stages of growth by allowing increased acropetal movement. The rate of accumulation of kinetin in receiver blocks was greater than the in vivo increase in cytokinin content of developing radish roots.  相似文献   

5.
Kaurene synthetases catalyse the biosynthesis of ent-kaurene, a precursor of the gibberellins. In 4-day-old dark- or light-grown Helianthus annuus seedlings, the cotyledons contained over 90% of the synthetase activity. The low enzyme activity in the seedling hypocotyls and roots is not a consequence of inhibitory factors in these tissues. The cotyledons not only have the highest kaurene synthetase activity, but also have the highest inhibitory activity. The differences in kaurene synthetase activities in the different tissues cannot be explained on the basis of the levels of inhibitor(s) in the extracts. The mature perennial root of Marah macrocarpus has very low kaurene synthetase activity, in contrast to the liquid endosperm of immature seeds of the same plant which is a rich source of the enzyme.  相似文献   

6.
The effects of atmospheric methyl jasmonate on the level of flavonoids and biogenic amines in de-etiolated seedlings of common buckwheat (Fagopyrum esculentum Moench) were investigated. In cotyledons and hypocotyls of etiolated seedlings, some traces of anthocyanins were found, with no flavones and flavonols identified. A measurable content of flavones and flavonols was, however, determined in roots. De-etiolation process stimulated the accumulation of all flavonoid types. Methyl jasmonate clearly decreased the content of anthocyanins in the hypocotyl, not affecting their level in cotyledons. In case of roots, the content of anthocyanins increased after a 4-day treatment. In general, reduction in the level of flavones and flavonols was recorded only in the hypocotyl, however it was not always significant. Cotyledons of the seedlings treated with methyl jasmonate responded by a slight increase in flavonoids level. Methyl jasmonate considerably induced the accumulation of 2-phenylethylamine in all the seedling organs, increasing the content of putrescine and tryptamine in cotyledons, and decreasing the level of tryptamine in roots.  相似文献   

7.
Apical applications of 0.2 μg N6-benzyladenine (BA), a synthetic cytokinin, or 5 μg of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.  相似文献   

8.
9.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

10.
Background and Aims The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development.Methods The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate–glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide (·NO), superoxide radical (O2·–) and peroxynitrite (ONOO) was investigated using confocal laser scanning microscopy.Key Results The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme.Conclusions There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment.  相似文献   

11.
12.
光照对大豆幼苗组织中异黄酮含量和分布的影响   总被引:13,自引:0,他引:13  
利用高效液相色谱(HPLC)测定了不同光照处理的大豆(Glycinemax(L.)Merri.)幼苗不同组织的异黄酮类含量。子叶中最高,叶片和根部相对较少。子叶的异黄酮以大豆甙和染料木甙及其丙二酰基结合体为主,且在光照条件下,异黄酮含量随光照时间的增加而显著升高;相反,黑暗中的异黄酮含量随苗龄的增加呈下降趋势;当子叶由黑暗转为光照处理以后,异黄酮含量同样随光照时间的增加而升高。在叶片和根部异黄酮含量和种类也因光照条件的不同而有很大差异。光照条件下,叶片中以染料木甙及其丙二酰结合体和黄酮芦丁为主,且随时间增加呈上升趋势;黑暗中的黄化叶片,则以大豆甙和丙二酰结合体为主,但随时间的变化不明显。在幼苗根部,黑暗条件下几乎检测不出异黄酮的存在;光照条件下,则可检测到5种异黄酮,其中以大豆甙元及其衍生物占主要部分。实验证实了光照对大豆异黄酮的积累有明显的促进作用  相似文献   

13.
14.
The contents of isoflavones in the developing soybean seedling tissues under different light conditions were examined by high-performance liquid chromatography (HPLC). The results indicated that the total contents of isoflavones in soybean seedling tissues were remarkably different, being the highest in the cotyledons and lower in the leaves and roots. In the cotyledons, the isoflavones like daidzin, genistin and their malonyl conjugates were the major metabolites and were increased markedly with the time of light exposure. In contrast, there was a decrease in the content of isoflavones in the dark. When the dark grown seedlings were tranferred to the light, an increase of the isoflavone content was observed. In the leaves and roots, there was also a marked difference in the contents and types of isoflavones due to various light conditions. Leaves contained mainly the isoflavones such as genistin, malonyl gensistin and flavones rutin, which were increased gradually under light condition, but in the dark, daidzin and malonyl daidzin were the major metabolites and did not change markedly with time. In the roots, no isoflavone was detected in the dark, while five isoflavones were found in the light-grown seedlings, and all root sections were predominated by daidzein and its conjugates. These results provided the evidence that light strongly stimulates the accumulation of isoflavones in soybean seedling tissues.  相似文献   

15.
Four cell wall proteins of seedling cotyledons of Prosopis chilensis were characterized by SDS-polyacrylamide gel electrophoresis. The molecular masses of these proteins were 180, 126, 107 and 63 kDa. All of them immuno-crossreacted with polyclonal antibodies raised against extensin from soybean seed coats. Immuno-dot blot analysis demonstrated that the minimum expression of cotyledonary cell wall proteins was 48 h after seed imbibition, while 24 h after wound stress the expression of these wall proteins increased four-fold. Tissue immuno-prints and immuno-histochemistry showed that the proteins are expressed in the cell wall of all tissues. However, the epidermis and vascular bundles of cotyledons, hypocotyls and roots, and the living cells surrounding the wounded areas highly expressed the wall proteins. When the primary roots of the seedlings were injured by performing cuts with razor blades, the seedlings achieved a growth three times faster than control seedlings and secondary roots developed in sites close to the injuries. Immuno-histochemistry of secondary roots revealed that the root tips and the area of the cortical tissue of the primary roots being pressed by the the emerging root tip, highly expressed the cell wall proteins.  相似文献   

16.
Developing seedlings of Catharanthus roseus were analyzed for appearance of tryptophan decarboxylase (TDC), strictosidine synthase (SS), N-methyltransferase (NMT) and O-acetyltransferase (DAT) enzyme activities. SS enzyme activity appeared early after germination and was present throughout most of the developmental study. TDC activity was highly regulated and peaked over a 48 hour period achieving a maximum by day of 5 of seedling development. Both TDC and SS were present in all tissues of the seedling. NMT and DAT enzyme activities were induced after TDC and SS had peaked and these activities could only be found in hypocotyls and cotyledons. TDC, SS, and NMT did not require light for induction whereas DAT enzyme activity was increased approximately 10-fold after light treatment of dark grown seedlings.  相似文献   

17.
Exposure of gibberellic acid-treated seedlings of a monoecious cucumber cultivar `Chipper' (Cucumis sativus L.) to ethylene caused thickening of the hypocotyl, inhibited longitudinal growth, and had no effect on fresh weight. Downward curvature of cotyledons was increased by the presence of ethylene. A gynoecious breeding line, `Gy 3,' had thicker hypocotyls and displayed its cotyledons in a more downward position than `Chipper'. Excised hypocotyls of the gynoecious seedlings produced three times as much ethylene as did the monoecious Chipper hypocotyls. Thus, ethylene may play a role in the regulation of cucumber seedling morphology.  相似文献   

18.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

19.
Seedlings of lupine (Lupinus luteus L. cv. Juno) were exposed for up to 96 hours to 1 to 2 kPa partial pressure oxygen (hypoxic treatment) and activities of alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH) and their isoform profiles were determined. Roots of lupine seedlings were grown in a nitrogen flushed nutrient solution while their shoots were in air. Prolonged hypoxia led to a reduction of root elongation. This was accompanied by reduced increase in dry weight suggesting that insufficient carbohydrate supply was the cause of retarded growth of lupine roots. Hypoxically treated roots showed induction of ADH and LDH acivities. The maximum increase in LDH activity was low (2-fold) in contrast to ADH activity, which increased up to 7-fold. Hypoxic treatment of roots did not affect the activities of ADH and LDH in hypocotyls and cotyledons. Analysis of ADH and LDH activity gels indicated in roots 1 and 2 isoforms, respectively. The level of isozymes of both enzymes increased in roots upon exposure to hypoxic stress. Differences in isoenzymatic spectrum of ADH and LDH between roots, hypocotyls and cotyledons indicate organ specificity of isozymes of both enzymes. The importance of alcohol and lactate fermentation in roots to cope with hypoxic stress is discussed.  相似文献   

20.
R. F. Meyer  J. S. Boyer 《Planta》1981,151(5):482-489
Soybean (Glycine max (L.) Merr.) seedlings osmoregulate when the supply of water is limited around the roots. The osmoregulation involves solute accumulation (osmotic adjustment) by the elongating region of the hypocotyls. We investigated the relationship between growth, solute accumulation, and the partitioning of solutes during osmoregulation. Darkgrown seedlings were transplanted to vermiculite containing 1/8 (0.13 x) the water of the controls. Within 12–15 h, the osmotic potential of the elongating region had decreased to-12 bar, but it was-7 bar in the controls. This osmoregulation involved a true solute accumulation by the hypocotyls, since cell volume and turgor were virtually the same regardless of the water regime. The hypocotyls having low water potentials elongated slowly but, when deprived of their cotyledons, did not elongate or accumulate solute. This result indicated a cotyledonary origin for the solutes and a dependence of slow growth on osmotic adjustment. The translocation of nonrespired dry matter from the cotyledons to the seedling axis was unaffected by the availability of water, but partitioning was altered. In the first 12 h, dry matter accumulated in the elongating region of the 0.13 x hypocotyls, and osmotic adjustment occurred. The solutes involved were mostly free amino acids, glucose, fructose, and sucrose, and these accounted for most of the increased dry weight. After osmotic adjustment was complete, dry matter ceased to accumulate in the hypocotyls and bypassed them to accumulate in the roots, which grew faster than the control roots. The proliferation of the roots resulted in an increased root/shoot ratio, a common response of plants to dry conditions.Osmotic adjustment occurred in the elongating region of the hypocotyls because solute utilization for growth decreased while solute uptake continued. Adjustment was completed when solute uptake subsequently decreased, and uptake then balanced utilization. The control of osmotic adjustment was therefore the rate of solute utilization and, secondarily, the rate of solute uptake. Elongation was inhibited by unknown factors(s) despite the turgor and substrates associated with osmotic adjustment. The remaining slow elongation depended on osmotic adjustment and represented some optimum between the necessary inhibition for solute accumulation and the necessary growth for seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号