首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
Antrodin C is one of the most potent bioactive components produced by the medicinal mushroom Antrodia camphorata. However, almost all studies in this field have focused on the biological activity of Antrodin C and relatively rare information has been reported regarding the biosynthetic process of Antrodin C. In this study, the strategies of pH-shift and glucose feeding for enhanced production of Antrodin C in submerged fermentation of A. camphorata were successfully applied in stirred bioreactors. The critical parameters for pH-shift and glucose feeding were systematically investigated. On one hand, the optimal culture pH for cell growth was distinct with Antrodin C biosynthesis and the maximum Antrodin C production was obtained by maintaining the first-stage culture at initial pH 4.5 and adjusted to 6.0 at day 8. On the other hand, it was beneficial for the Antrodin C accumulation with the initial glucose concentration of 40 g/L and feeding glucose to keep the residual sugar above 10 g/L. The maximum Antrodin C production (1,549.06 mg/L) was about 2.1-fold higher than that of control in 15-L stirred bioreactors by taking advantage of the integrated strategy of pH-shift and glucose feeding. These results would be helpful for the design of a highly efficient Antrodin C biosynthesis process.  相似文献   

2.
Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.  相似文献   

3.
Bacillus sphaericus MTCC511 was used for the production of protease in submerged batch fermentation. Maximum protease activity of 1010 U/L was obtained during a fermentation period of 24 h under optimized conditions of 30 °C in a medium with an initial pH of 7 and at a shaking rate of 120 rpm. The maximum biomass obtained in the batch fermentation was 2.55 g/L after 16 h. Various unstructured models were analyzed to simulate the experimental values of microbial growth, protease activity and substrate concentration. The unstructured models, i.e. the Monod model for microbial growth, the Monod incorporated Luedeking‐Piret model for the production of protease and the Monod‐incorporated modified Luedeking‐Piret model for the utilization of substrate were capable of predicting the fermentation profile with high coefficient of determination (R2) values of 0.9967, 0.9402 and 0.9729, respectively. The results indicated that the unstructured models were able to describe the fermentation kinetics more effectively.  相似文献   

4.
An integrated nutrition and bioprocess strategy was developed for improving the biosynthesis of an antitumor compound, 1403C, by a marine-derived fungus, Halorosellinia sp. (no. 1403). First, statistical design strategies were synthetically applied to optimize the nutritional composition. The resulting 1403C production reached 2.07 g/l, which was 143.5 % higher than the original production. However, it only produced 0.44 g/l of 1403C in 5-l bioreactor fermentation. Thus, the operating parameters including culture pH, dissolved oxygen, agitation speed, impeller type and inoculum level were considered to improve the fermentation process, and an effective control strategy for 1403C production by Halorosellinia sp. submerged in a 5-l bioreactor was established. When inoculating 0.22 g/l dry biomass, controlling dissolved oxygen not lower than 30 % during the growth phase but ranging between 30 and 40 % during the stationary phase, using a double-layer six-flat-blade Rushton disc turbine agitated at 400 rpm, keeping short-term low pH and rapid-rising pH with glucose starvation, the highest 1403C production was finally obtained at 1.32 g/l, which was promoted by 200 % compared to before optimization. Fermentation scale-up was finally performed in a 500-l bioreactor, and 1403C production of 1.09 g/l was obtained.  相似文献   

5.
Lactobacillus brevis 3-A5 was isolated and expected to produce mannitol efficiently by regulating pH in batch and fed-batch fermentations. In 48 h batch fermentations with free and constant pH, the optimal pH for cell growth and mannitol production in the first 24 h of incubation was 5.5, whereas that for mannitol production in the second 24 h of incubation was 4.5. To achieve high cell density and mannitol yield simultaneously, a dual-stage pH control strategy was proposed based on the kinetic analysis of mannitol production. The pH value was controlled at 5.5 for the first 12 h of fermentation and subsequently shifted to 4.5 until the fermentation was completed. Under dual-stage pH control fermentation, a 103 g/L yield of mannitol with a volumetric production rate of 3.7 g/L/h was achieved after 28 h. The dual-stage pH control fed-batch fermentation strategy was further developed to improve mannitol yield, wherein the yield increased by 109 % to 215 g/L after 98 h of fermentation. This value is the highest yield of mannitol ever reported using L. brevis.  相似文献   

6.
Summary Acetic acid was produced from anaerobic fermentation of lactose by the co-culture ofStreptococcus lactis andClostridium formicoaceticum at 35° C and pHs between 7.0 and 7.6. Lactose was converted to lactic acid, and then to acetic acid in this mixed culture fermentation. The overall acetic acid yield from lactose was about 95% at pH 7.6 and 90% at pH 7.0. The fermentation rate was also higher at pH 7.6 than at pH 7.0. In batch fermentation of whey permeate containing about 5% lactose at pH 7.6, the concentration of acetic acid reached 20 g/l within 20 h. The production rate then became very slow due to end-product inhibition and high Na+ concentration. About 30 g/l acetate and 20 g/l lactate were obtained at a fermentation time of 80 h. However, when diluted whey permeate containing 2.5% lactose was used, all the whey lactose was converted to acetic acid within 30 h by this mixed culture.  相似文献   

7.
Scale up studies for production of lipoic acid (LA) from Saccharomyces cerevisiae have been reported in this paper for the first time. LA production in batch mode was carried out in a stirred tank bioreactor at varying agitation and aeration with maximum LA production of 512 mg/L obtained at 350 rpm and 25 % dissolved oxygen in batch culture conditions. Thus, LA production increased from 352 mg/L in shake flask to 512 mg/L in batch mode in a 5 L stirred tank bioreactor. Biomass production under these conditions was mathematically explained using logistic equation and data obtained for LA production and substrate utilization were successfully fitted using Luedeking–Piret and Mercier’s models. The kinetic studies showed LA production to be growth associated. Further enhancement of LA production was carried out using fed-batch (variable volume) and semi-continuous modes of fermentation. Semi-continuous fermentation with three feeding cycles of sucrose effectively increased the production of LA from 512 to 725 mg/L.  相似文献   

8.
During lactic acid fermentation, seed culture is usually carried out without pH control, while culture is carried out at pH controlled at the optimal value to overcome inhibitory effects. The Luedeking–Piret expression was therefore previously modified by introducing additional terms involving the undissociated form of the lactic acid, the main inhibitory species, in case of batch cultures without pH control or involving the residual lactose concentration to account for the carbon substrate limitation, responsible for cessation of production during batch cultures of Lactobacillus helveticus at controlled pH. Both expressions were also merged to deduce a generalized model. Both models, as well as the Luedeking–Piret model, were developed to describe continuous two-stage culture of L. helveticus. By considering the parameter values obtained from the fitting of batch culture data, both modified Luedeking–Piret models showed interesting predictive potential. Indeed, some rather reliable predictive calculated values were recorded in both stages; the residual standard deviations were 0.5 and less than 8.8 for the biomass and the product concentrations at steady-state in the culture stage (second stage). The optimization of the parameters for growth- and non-growth-associated parameters improved the fitting in the culture stage, leading to residual standard deviations below 2.6 for lactic acid concentrations at steady-state.  相似文献   

9.
The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM MnCl(2) at an initial pH 6.0 and temperature 31 degrees C. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.  相似文献   

10.
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH?=?6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L?×?h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L?×?h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.  相似文献   

11.
A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett–Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98 g/L for cane molasses, 2.35 g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89 g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97 g/L of biomass was obtained after 36 hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.  相似文献   

12.
Pseudoalteromone A (PA) is a cytotoxic and anti-inflammatory ubiquinone discovered recently from a marine bacterium Pseudoalteromonas sp. CGH2XX. In order to meet its sample supply for further in vivo pharmacological investigation, an efficient method was developed for the preparation of PA by combination of response surface methodology (RSM) and high-speed counter-current chromatography (HSCCC) from marine bacterium P. rubra QD1-2. First, optimization of culture conditions was studied by the RSM to enhance PA production. The results indicated that the optimal cultivation condition was peptone (2.21 g/l), yeast extract (3.125 g/l), glucose (0.125 g/l), KBr (0.02 g/l), inoculum size (6.5 %), medium volume (595 ml), initial pH value (7.0), temperature (28 °C). Under the optimized fermentation condition, PA production was 1.04 mg/l with 14.8-fold increase comparing to 0.07 mg/l under original standard fermentation condition. The PA production was further investigated using a 14-l jar fermenter. Compared to the flask culture, P. rubra QD1-2 offered 45 % increase of PA production at 1.51 mg/l. Then, a rapid and efficient method for the separation and purification of PA from crude culture extract was developed using HSCCC. The two-phase solvent system used for HSCCC separation was composed of n-hexane–ethyl acetate–methanol–water (5:5:9:5, v/v/v/v). The isolation was accomplished within 100 min, and the purity of PA was over 95 %. The recovery of the process was 93 %.  相似文献   

13.
In this work, an immobilization method for polymer-levan production by a non-flocculating Z mobilis culture was developed. The extent of cell attachment to the stainless steel wire surface, culture growth and product synthesis were described. It was established that during short-term passive immobilization of non-flocculation Z mobilis cells on a stainless steel wire surface, sufficient amounts of biomass for proper levan and ethano fermentation could not be obtained. Adherence of cells was improved by pressing the paste-like biomass within stainless steel spheres knitted from wire with subsequent dehydration. Biomass fixed in metal spheres was used for repeated batch fermentation of levan. The activation period of cells within wire spheres (WS) was 48 h in duration. During this time, cell growth stabilized at production levels of ethanol and levan of Qeth = 1.238 g/l × h and qeth = 0.47 g/l × h; Qeth = 0.526 g/l × h and qeth = 0.20 g/l × h. Five stable fermentation cycles were realized using one wire sphere inoculum, and maintaining a stable ratio of 2.4 of biomass suspended in the medium to biomass fixed in the sphere. Using fixed Z mobilis biomass in the WS, the total amount of inoculum could be reduced for batch fermentation. Large plaited wire spheres with biomass may have potential in fermentation in viscous systems, including levan production.  相似文献   

14.
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.  相似文献   

15.
Medium and culture conditions for alginate lyase production by marine Vibrio sp. QY102 were first optimized using statistical methods including Plackett–Burman design and central composite design. Then, fermentation in 5-L bioreactor showed that alginate acted as easily used carbohydrate for Vibrio sp. QY102, while starch extended its growth phase and stabilized pH variations. Thus, a novel strategy using mixed carbon sources was proposed that starch supported growth while enzyme synthesis was induced by pulse feedings of solid alginate. The optimized process followed that Vibrio sp. QY102 grew on starch until the end of the logarithmic growth phase, and then solid alginate was added as 1 g/L every 3 h. Meanwhile, initial pH 5.0 and natural pH during fermentation was favorable for alginate lyase production. After optimization, the highest alginate lyase production reached 52.8 U/mL, which was 329 % higher than the control. Finally, fermentation scale-up was performed in 30-L bioreactor and the maximum alginate lyase production was obtained as 46.8 U/mL.  相似文献   

16.
Eleven different Aspergillus strains were evaluated for their ability to produce β-glucosidase using sugar cane bagasse as a sole carbon source under solid state fermentation (SSF). The most potent strains, A. niger NRC 7 (674.6 U/g ds) and A. oryzae NRRL 447 (83 U/g ds), were used in a mixed culture to enhance β-glucosidase production by co-culturing under SSF. In mixed culture, β-glucosidase of the two strains (814 U/g ds) was nearly 1.2- and 9.8-fold than that of monocultures of A. niger NRC 7A and A. oryzae NRRL 447, respectively. Optimization of the culture parameters, initial pH value, moisture content, inoculum size and ratios of the two strains. and incubation time exhibited a significant increase in β-glucosidase production (1,893 U/g ds) than before optimization. Single feeding with citrate-phosphate buffer, succinate buffer, casein. and soybean flour individually after the third day of the fermentation time and controlling the moisture content at 90 % (w/w) induced β-glucosidase production. Maximum enzyme production increased up to 2.1-fold compared to 2,188 U/g ds during normal batch culture. Among nitrogen sources, soybean flour gave the highest β-glucosidase (4,578 U/g ds). while urea reduced β-glucosidase production (1,693 U/g ds). However, the combination of buffers with soybean flour through two fed cycles resulted in a decrease of the enzyme than single fed with buffers or soybean flour alone.  相似文献   

17.
For efficient astaxanthin production from the culture of green microalga, Haematococcus pluvialis, a two-stage mixotrophic culture system was established with stepwise increased light irradiance. By perfusion process, high density biomass (2.47 g/L) was achieved during the vegetative stage due to no detrimental effect of inhibitory metabolites, which was 3.09 and 1.67 times higher than batch and fed-batch processes, respectively. During the induction stage, biomass and astaxanthin were subsequently produced to the very high level 12.3 g/L and 602 mg/L, under stepwise increased light irradiance (150–450 μE/m2/s), respectively. These results indicate that the combinatorial approach of perfusion culture during the vegetative stage and stepwise light irradiation during the induction stage is a promising strategy for the simultaneous production of high concentration of biomass and astaxanthin in microalgae including H. pluvialis.  相似文献   

18.
After over 100 strains of Aureobasidium spp isolated from mangrove system were screened for their ability to produce poly(β-malic acid) (PMA), it was found that Aureobasidium sp. P6 strain among them could produce high level of Ca2+-PMA. Fourteen percent glucose and 6.5 % CaCO3 in the medium were the most suitable for Ca2+-PMA production. Then, 100.7 g/l of Ca2+-PMA was produced using Aureobasidium sp. P6 strain within 168 h at flask level. During 10-l batch fermentation, when the medium contained 12.0 % glucose, 98.7 g/l of Ca2+-PMA in the culture and 14.7 g/l of cell dry weight were obtained within 156 h, leaving 0.34 % reducing sugar in the fermented medium. When glucose concentration in the fermentation medium was 14.0 %, 118.3 g/l of Ca2+-PMA in the culture and 16.4 g/l of cell dry weight were obtained within 168 h, leaving 0.4 % reducing sugar in the fermented medium. After purification of Ca2+-PMA from the culture and acid hydrolysis of the pure Ca2+-PMA, analysis of HPLC showed that Aureobasidium sp. P6 strain only produced two main components of Ca2+-PMA and minor amount of calcium malate and that the hydrolysate of PMA was mainly composed of calcium malate. This is the first time to report that the novel yeast strain Aureobasidium sp. P6 strain isolated from the mangrove systems can produce such high amount of Ca2+-PMA.  相似文献   

19.
Based on a five level central composite design (CCD) involving the variables substrate concentration (C), pH (P), incubation temperature (T) and fermentation time (H), a response surface methodology (RSM) for the production of ethanol from pretreated sugarcane bagasse by cellulase and yeast Kluyveromyces fragilis was standardized. The design contains a total of 31 experimental trials in which the first 24 organized in a factorial design and from 25 to 31 involving the replications of the central points. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation. Maximum ethanol concentration (32.6 g/l) was obtained from 180 g/l pretreated sugarcane bagasse at the optimized process conditions (temperature 35°C, pH 5.5) in 72 h aerobic batch fermentation. Various kinetic models such as logistic model, logistic incorporated leudeking piret model and logistic incorporated modified leudeking piret model have been evaluated and the constants were predicted.  相似文献   

20.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号