首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

2.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

3.
Semi-continuous algal cultivation was completed in outdoor flat-panel photobioreactors (panels) and open raceway ponds (raceways) from February 17 to May 7, 2015 for side-by-side comparison of areal productivities at the Arizona Center for Algae Technology and Innovation in Mesa, AZ, USA. Experiments used two strains of Scenedesmus acutus (strains LB 0414 and LB 0424) to assess productivity, areal density, nutrient removal, and harvest volume across cultivation systems and algal strains. Panels showed an average biomass productivity of 19.0?±?0.6 g m?2 day?1 compared to 6.62?±?2.3 g m?2 day?1 for raceways. Photosynthetic efficiency ranged between 1.32 and 2.24 % for panels and between 0.30 and 0.68 % for raceways. Panels showed an average nitrogen consumption rate of 38.4?±?8.6 mg N L?1 day?1. Cultivation in raceways showed a consumption rate of 3.8?±?2.5 and 7.1?±?4.2 mg N L?1 day?1 for February/March and April/May, respectively, due to increase in biomass productivity. Excess nutrients were required to prevent a decrease in productivity. Daily biomass harvest volumes between 18 and 36 % from panels did not affect culture productivity, but density decreased with increased harvest volume. High cultivation temperatures above 30 °C caused strain LB 0414 to lyse and crash. Strain LB 0424 did not show any difference in biomass productivity when peak temperatures reached 34, 38, or 42 °C, but showed decreased productivity when the peak temperature during cultivation was 30 °C. Using algal strains with different temperature tolerances can generate increased annual biomass productivity.  相似文献   

4.
For the design of a large field of vertical flat plate photobioreactors (PBRs), the effect of four design parameters—initial biomass concentration, optical path length, spacing, and orientation of PBRs—on the biochemical composition and productivity of Chlorella zofingiensis was investigated. A two-stage batch process was assumed in which inoculum is generated under nitrogen-sufficient conditions, followed by accumulation of lipids and carbohydrates in nitrogen-deplete conditions. For nitrogen-deplete conditions, productivity was the most sensitive to initial biomass concentration, as it affects the light availability to individual cells in the culture. An initial areal cell concentration of 50 g m?2 inoculated into 3.8-cm optical path PBR resulted in the maximum production of lipids (2.42?±?0.02 g m?2 day?1) and carbohydrates (3.23?±?0.21 g m?2 day?1). Productivity was less sensitive to optical path length. Optical path lengths of 4.8 and 8.4 cm resulted in similar areal productivities (biomass, carbohydrate, and lipid) that were 20 % higher than a 2.4-cm optical path length. Under nitrogen-sufficient conditions, biomass productivity was 48 % higher in PBRs facing north–south during the winter compared to east–west, but orientation had little influence on biomass productivity during the spring and summer despite large differences in insolation. An optimal spacing could not be determined based on growth alone because a tradeoff was observed in which volumetric and PBR productivity increased as space between PBRs increased, but land productivity decreased.  相似文献   

5.
The biomass productivity of Scenedesmus obliquus was investigated outdoors during all seasons in solar tracked flat panel photobioreactors (PBR) to evaluate key parameters for process optimization. CO2 was supplied by flue gas from an attached combined block heat and power plant. Waste heat from the power plant was used to heat the culture during winter. The parameters pH, CO2, and inorganic salt concentrations were automatically adjusted to nonlimiting levels. The optimum biomass concentration increased directly with the photosynthetic active radiation (PAR) from 3 to 5 g dry weight (DW)?L?1 for a low PAR of 10 mol photons m?2 day?1 and high PAR of 40–60 mol photons m?2 day?1, respectively. The annual average biomass yield (photosynthetic efficiency) was 0.4?±?0.5 g DW mol?1 photons. However, biomass yields of 1.5 g DW mol?1 photons close to the theoretical maximum were obtained at low PAR. The productivity (including the night biomass losses) ranged during all seasons from ?5 up to 30 g DW m?2 day?1 with a mean productivity of 9?±?7 g DW m?2 day?1. Low night temperatures of the culture medium and elevated day temperatures to the species-specific optimum increased the productivity. Thus, continuous regulation of the biomass concentration and the culture temperature with regard to the fluctuating weather conditions is essential for process optimization of outdoor microalgal production systems in temperate climates.  相似文献   

6.
《Biomass》1987,12(1):37-47
The effect of environmental factors on cell-lipid content, on the growth rate and on the overall productivity of Nannochloropsis salina was tested in the laboratory and in outdoor cultures. Under optimum conditions in the laboratory, the maximum growth rate (μmax) was 0·030 h−1, which corresponds to a doubling time of 23 h. Cellular lipid content was affected by the phase of growth and the temperature, but not by nitrogen starvation, pH or the source of sea water. The most important factor affecting the output rate of biomass was the cell concentration. The maximum biomass productivity obtained in outdoor ponds was 24·5 g·m−2·day−1, and the lipid production rate was 4·0 g m−2·day−1.  相似文献   

7.
The feasibility of attached culture Chlorella vulgaris in a porous substratum biofilm reactor (PSBR) for simultaneous wastewater treatment and biofuel production was investigated. The characteristics, including algal biofilm growth, lipid yield, nutrient removal, and energy efficiency of the outdoor cultures, were investigated under the influence of both inoculum densities and the percent submerged area. A maximum biofilm productivity of 57.87 g m?2 d?1 with 81.9 % adhesion was achieved under optimal conditions (inoculum density of 18 g m?2 and the percent submerged area of 5.7 %). The lipid content and lipid yield were 38.56 % and 27.25 g m?2 d?1, respectively. Meanwhile, the algae removed 99.95 % ammonia, 96.05 % total nitrogen (TN), and 99.83 % total phosphorus (TP). Further, the energy life cycle for the PSBR was analyzed. The biomass productivity per unit irradiance was up to 4.6 g MJ?1 (photosynthetic efficiency of 10.65 %). The PSBR was considered to be economically feasible due to the net energy ratio of 1.3 (>1).  相似文献   

8.
Microalgal triglycerides (TAGs) represent a sustainable feedstock for food, chemical and biofuel industries. The operational strategy (batch, semi-continuous, continuous cultivations) has an impact on the TAG productivity. In this study, semi-continuous (i.e. with fixed harvesting frequency) and batch cultivations were compared on TAG production both at lab-scale and in outdoor cultivations. At lab-scale, the semi-continuous TAG productivity was highest for a cycle time of 2 days (SC1; 0.21 g L?1 day?1) and similar to the maximum obtained with the batch (optimal harvest time; 0.23 g L?1 day?1). Although TAG content was lower for SC1 (22 %) than for the batch (35 %), higher biomass productivities were obtained with SC1. Outdoors, semi-continuous cultivations were subjected to a lower degree of stress (i.e. higher amount of nitrogen present in the system relative to the given irradiance) compared to lab-scale. This yielded low and similar TAG contents (10–13 %) in the different semi-continuous runs that were outdone by the batch on both TAG content (15–25 %) and productivity (batch, 0.97–2.46 g m?2 day?1; semi-continuous, 0.35–0.85 g m?2 day?1). The lab-scale experiments showed that semi-continuous strategies, besides leading to similar TAG productivities compared to the batch, could make TAG production cost effective by valorising also non-TAG compounds. However, optimization of outdoor semi-continuous cultivations is still required. For instance, the nitrogen supply and the harvest frequency should be adjusted on the total irradiance. Additionally, future research should focus on recovery metabolism upon nitrogen resupply.  相似文献   

9.
Difficulties and cost of suspended microalgal biomass harvest and processing can be overcome by cultivating microalgae as biofilms. In the present work, a new photoautotrophic biofilm photobioreactor, the rotating flat plate photobioreactor (RFPPB), was developed aiming at a cost-effective production of Chlorella vulgaris (SAG 211-12), a strain not frequently referred in the literature but promising for biofuel production. Protocols were developed for evaluating initial adhesion to different materials and testing the conditions for biofilm formation. Polyvinyl chloride substrate promoted higher adhesion and biofilm production, followed by polypropylene, polyethylene, and stainless steel. The new RFPPB was tested, aiming at optimizing incident light utilization, minimizing footprint area and simplifying biomass harvesting. Tests show that the photobioreactor is robust, promotes biofilm development, and has simple operation, small footprint, and easy biomass harvest. Biomass production (dry weight) under non-optimized conditions was 3.35 g m?2, and areal productivity was 2.99 g m?2 day?1. Lipid content was 10.3% (dw), with high PUFA content. These results are promising and can be improved by optimizing some operational parameters, together with evaluation of long-term photobioreactor maximum productivity.  相似文献   

10.
The basic requirement for establishing economically viable large-scale production of algal biomass, be it for food, feed, high-value product, or energy, is the ability to produce the biomass at a low price. To achieve this goal, an efficient production protocol is needed that ensures that the potential productivity is obtained at any given time. When productivity is defined by the ability to utilize the available solar radiation that drives photosynthesis, the production protocol must be optimized to meet this requirement. In the current study, we demonstrate that by modifying the light available to Arthrospira platensis cells cultured outdoors by a variety of options like modifying the standing biomass concentration, changing the mixing rate, or shading can change the potential photosynthetic activity and apparent activity. By optimizing the light available to algae cells under outdoor conditions, productivity can be increased by approximately 50 %, from 15.6 g m?2 day?1 in a culture that suffers from overexposure to light to 22.4 g m?2 day?1 in a culture in which light downregulation is minimized. Therefore, by using a variety of methodologies to estimate photosynthetic activity, we demonstrate that overexposing the cells to light may result in downregulation of the photosynthetic activity leading to photoinhibition and lower biomass productivity.  相似文献   

11.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

12.
Light source can affect the stomata opening, photosynthesis process, and pigment content in microalgae cells. In this study, growth rate, chlorophyll a (chl a) content, and electrogenic capability of Desmodesmus sp. A8 were investigated under incandescent and fluorescent lamps. Growth rate, productivity, and chl a content of strain A8 exposed to incandescent light were recorded as 0.092 ± 0.010 day?1, 0.019 ± 0.008 g L?1 day?1, and 15.10 ± 1.40 mg L?1, which decreased to 0.086 ± 0.006 day?1, 0.012 ± 0.004 g L?1 day?1, and 10.06 ± 1.59 mg L?1, respectively, under fluorescent light. The stable current density of bioelectrochemical systems inculcated with strain A8 under incandescent and fluorescent lamps were 249.76 and 158.41 mA m?2 at ?0.4 V vs. Ag/AgCl, coupling with dissolved oxygen within biofilm decreasing from 15.91 to 10.80 mg L?1. This work demonstrated that illuminating microalgae under an incandescent lamp can improve biomass production and electrogenic capabilities.  相似文献   

13.
Ulva spp. are used in a wide range of commercial applications, including bioremediation, food, bioenergy, pharmaceuticals, and agriculture. The sulfated polysaccharide ulvan obtained from Ulva spp. is of interest for triggering plant defenses against disease. However, the cultivation of Ulva spp. is still in its infancy. This study verified the feasibility of cultivating Ulva lactuca and Ulva flexuosa at two sites on the tropical Brazilian coast. We investigated the following: (a) methods to induce sporulation, (b) comparison of seeding ropes inoculated in vitro versus seeding at sea over 40 days, (c) production and harvest cycles at 15 and 30 days, (d) growth productivity of U. flexuosa at sea and in outdoor tanks, and (e) comparison of ulvan yields from biomass cultivated in tanks and the sea. High nutrient treatment was the most efficient method to induce sporulation (7,540?±?3,133 spores m?1). Sea-based cultivation of U. flexuosa was only successful at one site. Seeding of ropes in vitro was more efficient than seeding at sea (0.31?±?0.20 g m?2 day?1), and 15-day harvest cycles were most efficient (20.1?±?1.8 % day?1; 0.46?±?0.11 g m?2 day?1). Despite differences in plant growth in tanks (27.9?±?4.4 % day?1) and at sea (20.1?±?1.8 % day?1), the dry biomass and ulvan yields (17.7?±?5.0 %) did not differ between these systems. Cultivation of U. flexuosa was feasible at sea using in vitro seeding with a production cycle of 15 days in Brazilian tropical waters and tanks with high irradiance and enriched seawater.  相似文献   

14.
In this study, hypersaline media were used for ocean cultivation of the marine microalga Tetraselmis sp. KCTC12432BP for enhanced biomass and fatty acid (FA) productivity. Hypersaline media (55, 80, and 105 PSU) were prepared without sterilization by addition of NaCl to seawater obtained from Incheon, Korea. The highest biomass productivity was obtained at 55 PSU (0.16 g L?1 day?1) followed by 80 PSU (0.15 g L?1 day?1). Although the specific growth rate of Tetraselmis decreased at salinities higher than 55 PSU, prevention of contamination led to higher biomass productivity at 80 PSU than at 30 PSU (0.03 g L?1 day?1). FA content of algal biomass increased as salinity increased to 80 PSU, above which it declined, and FA productivity was highest at 80 PSU. Ocean cultivation of Tetraselmis was performed using 50-L tubular module photobioreactors and 2.5-kL square basic ponds, closed- and open-type ocean culture systems, respectively. Culturing microalgae in hypersaline medium (80 PSU) improved biomass productivities by 89 and 152% in closed and open cultures, respectively, compared with cultures with regular salinity. FA productivity was greatly improved by 369% in the closed cultures. The efficacy of salinity shift and N-deficiency to enhance FA productivity was also investigated. Lowering salinity to 30 PSU with N-starvation following cultivation at 80 PSU improved FA productivity by 19% in comparison with single-stage culture without N-deficiency at 30 PSU. The results show that salinity manipulation could be an effective strategy to improve biomass and FA productivity in ocean cultivation of Tetraselmis sp.  相似文献   

15.
In this study, an alga-based simultaneous process of treating swine wastewater (SWW) and producing biodiesel was explored. Chlorella vulgaris (UTEX-265) was employed as a model species, and a SWW-based medium was prepared by dilution with tap water. Chlorella vulgaris grew well in the SWW-based medium, and at optimum dilution ratios, it exceeded the conventional culture medium in terms of biomass concentration and productivity. In eightfold diluted SWW, which supported the maximum growth, biomass productivity was 0.247 g L?1 day?1, while the productivity was merely 0.165 g L?1 day?1 in standard tris-acetate-phosphorous (TAP) algal medium. In addition, fatty acid methyl ester (FAME) productivity was greater in the SWW-based medium (0.067 versus 0.058 g L?1 day?1). This enhanced productivity resulted in more than 95 % removal of both nitrogen and phosphorous. All these show that C. vulgaris cultivation is indeed possible in a nutrient-rich wastewater with appropriate dilution, and in so doing, the wastewater can effectively be treated.  相似文献   

16.
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day?1) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l?1 day?1 (peak 0.4 g l?1 day?1) at 0.4 day?1 in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l?1 day?1.  相似文献   

17.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

18.
Silicon deficiency is a lipid-promoting stress for many oleaginous diatoms. Literature reports suggest that reduced salinity in seawater, a primary component of which is sodium chloride, may inhibit metabolism of silicon in marine diatoms. We hypothesized that lowering sodium chloride below ocean levels may thus be effective in creating silicon stress and enhancing lipid productivity. We examined the interacting effects of silicon supply (0.05, 0.1, 0.2, and 0.8 mM) and sodium chloride concentration (50, 100, and 400 mM) on growth and lipid production in Chaetoceros gracilis. This was done in batch culture to facilitate the application of severe stress. Low levels of either sodium chloride or silicon resulted in at least 50 % increases in lipid content. The synergy of simultaneous, moderate sodium chloride and silicon stress resulted in lipid content up to 73 % of dry mass and lipid productivity of 1.7 g m?2 day?1; with a daily integrated photosynthetic photon flux of 17.3 mol photons m?2 day?1, the efficiency of lipid synthesis was thus 0.1 g mol?1 of photons. Decreased silicon also resulted in a 5 % shift in lipid chain length from C18 to C16 fatty acids. We observed a strong sodium chloride/silicon interaction on total and ash-free dry mass densities that arose because low sodium chloride concentrations were inhibitory to growth, but the inhibition was overcome with excessive silicon supply. This observation suggests that low levels of sodium chloride may have affected metabolism of silicon. The findings of this study can be used to enhance lipid production in oleaginous marine diatoms.  相似文献   

19.
Microalgal biodiesel is an alternative bioenergy for the future. Nitrogen deprivation is usually used to increase lipid content in microalgae, however, it also lowers biomass production, resulting in not much increase of lipid productivity. Our previous study found that phosphorus played an important role in enhancing biodiesel productivity of C. vulgaris FACHB-1072 under nitrogen deficient condition. The aim of this study was to optimize two significant parameters of CO2 concentration (0.03, 4, 6, 12 %) and light intensity (40, 120, 200 μmol photons m-2 s-1) with respect to biodiesel productivity and P uptake rate of C. vulgaris FACHB-1072. It was found that the optimized conditions were 4 % CO2 concentration and 200 μmol photons m-2 s-1 light intensity. The maximum biodiesel productivity was 34.56 mg L-1 day-1; 2.7 times higher than the control (nutrient sufficient condition). Phosphorus was accumulated as polyphosphate and its maximum uptake rate was 2.08 mg L-1 day-1; twice that of the control. After optimization, the performances under nitrogen deficiency were significantly better compared with those under nitrogen sufficiency, which were rarely reported in literature. Our findings suggest a great potential to combine phosphorus removal from wastewater with biodiesel production via microalgae.  相似文献   

20.
The “attached cultivation” method of microalgae in which the wet paste of algal biomass is attached onto supporting materials to form an immobilized biofilm layer, and the culture medium is supplied to this layer to provide nutrients and moisture for growth was highly efficient in biomass production and represents a promising technology to improve the biofuel industry. To optimize the nitrogen supply strategy for this attached cultivation method, the growth and total lipids accumulation properties for the green alga Aucutodesmus obliquus with this method were studied under different quantities of nitrogen source and different volumes of aqueous medium that continuously circulated inside the photobioreactor. Results showed that, compared with medium volume, the nitrogen quantity was a stronger factor affecting the growth and total lipid accumulation. An optimized nitrogen supply strategy for the attached cultivation of A. obliquus is proposed as circulating ca. 60 L of BG-11 medium containing 1/10 of nitrate concentration for 1 m2 of cultivation surface. With this strategy, the attached A. obliquus accumulated biomass and total lipids simultaneously and obtained a high triacylglyceride productivity of 2.53 g m?2 day?1 in 7 days under subsaturated illumination of 100 μmol photons m?2 s?1. The water usage of 60 L m?2 was potentially decreased to <2 L m?2 if the nutrient supply was further improved. Dissolving the nitrogen source in small volume was the best way to efficiently utilize the nitrogen source with minimum of waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号