首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on a metal-dielectric-metal (MDM) plasmonic waveguide side coupled with a single cavity, we rebuild such resonator system by cascading double side-coupled cavities to obtain flat-top reflection response over a frequency bandwidth. The increased coherent scattering path provides an additional freedom to engineer the complex interference between the cavity modes and the waveguide mode. By decomposing the compound cavity modes into two decoupled resonances, we analyze the conditions to realize flat-top reflection response. The physics behind the flat-top reflection characteristics is found to be originated from the interference interaction between the two cavities through examining the cavity excitations and the reflected power response. Temporal coupled-mode theory and finite difference time domain method are utilized as theoretical and numerical tools which convince each other.  相似文献   

2.

In the paper, resonances of different waveguide structures with various vertical indirect coupled cavities were investigated by FDTD (finite difference-time domain). In the silicon cavity, Fano resonance could be observed at about 1430 nm. The coupling distance for the gold cavity/air cavity had less effect on the transmittance of the main waveguide but had a great influence on the transmission for water cavity in the visible region, which showed that water cavity could adjust resonance of waveguide structures. In addition, with the increment of refractive index n, the resonance peak at about 850 nm moved to the long wavelength (redshift). Dispersion rate about 2 × 10–3/nm indicated that the transparent dielectric selectively absorbed the surface plasmon polariton wave and the sensitivity of the waveguide structure designed in this paper has high stability for the refractive index of the main waveguide cavity. Obvious Fano resonance could be observed with the increase of refractive index for silicon cavity. Among the four dielectrics, silicon and water are suitable for studying Fano resonance and filter dielectrics.

  相似文献   

3.
A tunable wavelength filter based on plasmonic metal?Cdielectric?Cmetal waveguide with optofluidics pump system has been proposed and numerically investigated. The finite difference time domain method with perfectly matched layer-absorbing boundary condition is adopted to simulate and study their properties. An analytical solution to the resonant condition of the structure is derived by means of the cavity theory. It is found that the resonant wavelength of the filter is easily tuned in a broadband by manipulating the fluid filled in the cavity. Both analytical and simulative results reveal that the resonant wavelengths are proportional to the volume and refractive index of liquid in the cavity and are related to the structure of the filter. The resonant wavelengths of this structure can be changed from 1,106 to around 1,800?nm in this paper. The waveguide filter may become a choice for the design of devices in highly integrated optical circuits.  相似文献   

4.
In this paper, a novel plasmonic filter with very high extinction ratio and low insertion loss is proposed based on the coherent coupled nano-cavity array in a metal–insulator–metal (MIM) waveguide. The coherent coupling interactions among nano-cavities are investigated with an analytical model which is derived based on the temporal coupled-mode theory and transfer-matrix method. The destructive interference of the surface plasmon polaritons coupled from the nano-cavities at the resonant wavelength is achieved by suitably designing the period of the cavity array, which may be used for increasing the extinction ratio of the filter based on the nano-cavity array in the MIM waveguide. A plasmonic filter with an extinction ratio higher than 60 dB and an insertion loss less than 1.0 dB is obtained by applying the destructive interference in the design of a six-rectangular-cavity array in an Ag–air–Ag waveguide. And the correctness of the design for the filter is verified by the results obtained with the finite-difference time-domain simulation technique. This work may provide useful schemes and approaches for realization of various wavelength-sensitive devices in plasmonic integrated circuits.  相似文献   

5.
Using the finite difference time-domain method, we present a comprehensive numerical investigation of a branch-shaped filter based on the metal-insulator-metal (MIM) waveguide. The results show that several passbands and stopbands appear in the transmission spectra, which are resulted by the phase differences between the surface plasmon polaritons (SPPs) propagating along the straight waveguide and the SPPs resonating in the circuit formed by the branch and the straight waveguide. The effects of the structural parameters of the branch-shaped filters on their transmission properties are also studied. These results not only present an alternative plasmonic filter for the MIM waveguides but also help us to understand the transmission properties of the circuit-shaped structures.  相似文献   

6.
Luo  Xin  Zhai  Xiang  Wang  Lingling  Lin  Qi  Liu  Jianping 《Plasmonics (Norwell, Mass.)》2017,12(2):509-514
Plasmonics - A novel narrow-band plasmonic filter in terahertz (THz) region based on optical Tamm plasmon (OTP) in dual-section InSb slot waveguide is proposed, and the corresponding transmission...  相似文献   

7.
A high performance plasmonic sensor based on a metal-insulator-metal (MIM) waveguide coupled with a double-cavity structure consisting of a side-coupled rectangular cavity and a disk cavity is proposed. The transmission characteristics of the rectangular cavity and disk cavity are analyzed theoretically and the improvements of performance for the double-cavity structure compared with a single cavity are studied. The influence of structural parameters on the transmission spectra and sensing performance are investigated in detail. A sensitivity of 1136 nm/RIU with a high figure of merit of 51,275 can be achieved at the resonant wavelength of 1148.5 nm. Due to the high performance and easy fabrication, the proposed structure may be applied in integrated optical circuits and on-chip nanosensors.  相似文献   

8.
Ko  Myong-Chol  Kim  Nam-Chol  Choe  Song-Il  Hao  Zhong-Hua  Zhou  Li  Li  Jian-Bo  Kim  Il-Gwang  Wang  Qu-Quan 《Plasmonics (Norwell, Mass.)》2016,11(6):1613-1619
Plasmonics - By using the real-space method, the switching of a single plasmon interacting with a hybrid nanosystem composed of a semiconductor quantum dot (SQD) and a metallic nanoparticle (MNP)...  相似文献   

9.
Zou  Fang  Zou  Xihua  Pan  Wei  Luo  Bin  Yan  Lianshan 《Plasmonics (Norwell, Mass.)》2017,12(5):1589-1594
Plasmonics - A multiple-channel plasmonic filter based on metal-insulator-metal waveguide and fractal theory is proposed. The sandwiched insulator layer is constructed by a series of dielectrics...  相似文献   

10.
Zhou  Chen  Huo  Yiping  Guo  Yiyuan  Niu  Qiqiang 《Plasmonics (Norwell, Mass.)》2021,16(5):1735-1743
Plasmonics - A metal-insulator-metal (MIM) waveguide consisting of two stub resonators and a ring resonator is proposed, which can be used as refractive index sensor and stop-band filter at the...  相似文献   

11.
Yan  Xicheng  Wang  Tao  Han  Xu  Xiao  Shuyuan  Zhu  Youjiang  Wang  Yunbo 《Plasmonics (Norwell, Mass.)》2017,12(5):1449-1455

A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.

  相似文献   

12.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

13.
14.
We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.  相似文献   

15.
Plasmonics - We present one of the simplest nanoscale systems for a high-performance refractive index (RI) sensor. We investigate analytically and numerically the transmission response of the...  相似文献   

16.

Optical channel drop filter (OCDF) plays a key role in optical communication networks for filtering the individual wavelength among the group of channels in wavelength division multiplexing systems. There are several channel drop filters with different design mechanisms available in the literature, but those structure dimensions are not compact enough for the photonic integrated applications. Hence, in this paper, a compact and efficient OCDF is developed in the triangular lattice PC structure based on diamond-shaped photonic crystal ring resonator (PCRR) mechanism combined with micro cavity resonator (MCR). The developed OCDF is analysed for different operating wavelengths by considering the different positions of MCR around the main PCRR. Based upon the position of the MCR around PCRR, the three dropping wavelengths such as 1540 nm, 1550 nm, and 1570 nm are observed at the output waveguides with 100% dropping efficiency. Then the structural and performance parameter comparison is done between the proposed and existing structures in terms of device dimension, dropping efficiency, and quality factor. It is depicted through the results that the quality factor and the device dimension are better than that of the existing structures for 1550-nm wavelength.

  相似文献   

17.
In this paper, a nanoscale three-dimensional plasmonic waveguide (TDPW), created by depositing an Ag stripe on a SiO2 layer with an Ag substrate, is introduced and theoretically investigated at visible and telecom wavelengths. By applying the effective index method and finite-difference time-domain numerical simulations, the authors find that the propagation properties of surface plasmon polaritons (SPPs) in the TDPW, including the propagation length and beam width, are mainly decided by the core (the SiO2 layer just under the Ag stripe) itself, due to the much stronger localization of SPPs in the core than in the two side claddings (the SiO2 layer without the covered Ag stripe). And propagating SPPs in the TDPW are strongly confined in the core region, even with a very small waveguide cross section. Furthermore, based on the stronger localization of propagation SPPs in the TDPW, two kinds of bending waveguides, oblique bending and 90° circular bending waveguides, are also investigated. For wavelength of 1550 nm, the 90° circular bending guide with a minimum radius as small as 2.6 μm show nearly zero radiation loss, even with a small waveguide cross section of 70?×?80 nm2. The proposed TDPW is suitable for planar integration and provides a possible way for constructing various nanoscale counterparts of conventional integrated devices such as splitter, resonator, sensor, and optical switch.  相似文献   

18.
Dynamically tunable multichannel filter based on plasmon-induced transparencies (PITs) is proposed in a plasmonic waveguide side-coupled to slot and rectangle resonators system at optical communication range. The slot and rectangle resonators in this system can be regarded as radiative or dark resonators as same as the radiative or dark elements in the metamaterial structure with the help of the evanescent coupling. The multiple PIT responses which can enable the realization of nanoscale filter with four channels are originated from the direct near-field coupling and indirect phase couple through a plasmonic waveguide simultaneously. Moreover, the magnitudes and bandwidths of the filter can be efficiently tuned by controlling of the geometric parameters such as the coupling distances and the pump light-induced refractive index change of the Kerr material which is embedded into the metal-dielectric-metal waveguide between the radiative resonators.  相似文献   

19.
Ha  Yingli  Guo  Yinghui  Pu  Mingbo  Li  Xiong  Ma  Xiaoliang  Luo  Xiangang 《Plasmonics (Norwell, Mass.)》2019,14(6):1735-1741
Plasmonics - Metasurfaces hold great promise for overcoming the limitations of conventional refractive and diffractive optics due to their unique electromagnetic properties. Nevertheless, most of...  相似文献   

20.
Luan  Jinyu  Fan  Meiyong  Zheng  Pengfei  Yang  Huimin  Hu  Guohua  Yun  Binfeng  Cui  Yiping 《Plasmonics (Norwell, Mass.)》2019,14(1):133-138
Plasmonics - Graphene modulators based on surface plasmonic waveguides enable a strong interaction between light and graphene because great electric field enhancement occurs in the sub-wavelength...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号