共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolic profiling of serum from gadolinium chloride-treated rats by 1H NMR spectroscopy 总被引:2,自引:0,他引:2
Metabolic profiling of serum from gadolinium chloride (GdCl(3), 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168h postdose (p.d.) after exposure to GdCl(3). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl(3) treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl(3) was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl(3) in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging. 相似文献
2.
O. P. Sidhu Sanjay Annarao Uday Pathre S. K. Snehi S. K. Raj Raja Roy Rakesh Tuli C. L. Khetrapal 《Planta》2010,232(1):85-93
Alterations in the anatomical structures, sap translocation and metabolic profiles in Jatropha curcas L. (Euphorbiaceae), infected with Jatropha mosaic virus (JMV) have been investigated using MRI and HR-MAS NMR spectroscopy. The contrast of MRI images distinguishes abnormalities
in anatomical structures of infected and healthy stem. The HR-MAS NMR spectroscopic analysis indicated that viral infection
significantly affected the plant metabolism. Higher accumulation of TCA cycle intermediates, such as citrate and malate, in
JMV-infected plants suggested a higher rate of respiration. The respiration rate was more than twofold as compared to healthy
ones. The viral stress also significantly increases the concentrations of alanine, arginine, glutamine, valine, GABA and choline
as compared to healthy ones. Microscopic examination revealed severe hyperplasia caused by JMV with a considerable reduction
in the size of stem cells. Lower concentration of glucose and sucrose in viral-infected stem tissues indicates decreased translocation
of photosynthates from leaves to stem due to hyperplasia caused by JMV. The MR images distinguished stele, cortical and pith
regions of JMV-infected and healthy stems. Contrast of T1- and T2-weighted images showed significant differences in the spatial distribution of water, lipids and macromolecules in virus-infected
and healthy stem tissues. The results demonstrated the value of MRI and HR-MAS NMR spectroscopy in studying viral infection
and metabolic shift in plants. The present methodology may help in better understanding the metabolic alterations during biotic
stress in other plant species of agricultural and commercial importance. 相似文献
3.
S Confort-Gouny J Vion-Dury F Nicoli P Dano J L Gastaut P J Cozzone 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1992,315(7):287-293
Proton localized Magnetic Resonance Spectroscopy (MRS) of the brain allows the non invasive detection of intracellular cerebral metabolites. Localized MRS has been performed using short stimulated-echo times in various neurological diseases including stroke, multiple sclerosis, and AIDS-related leukoencephalopathies. Principal component analysis (PCA) was used to determine the critical parameters defining the metabolic profile of normal and diseased brain. PCA clearly differentiates the demyelinating processes from ischaemic lesions and leukoencephalopathies. Localized MRS of the brain appears growingly as a tool of choice to discriminate, quantitate and assess cerebral metabolic damage in patients with neurological disorders. 相似文献
4.
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking. 相似文献
5.
Recently the identity of the peptidyl-prolyl cis-trans isomerase (PPIase), which accelerates the cis/trans isomerization of prolyl peptide bonds and cyclophilin, the binding protein for the immunosuppressive drug Cyclosporin A (CsA), was discovered. The PPIase catalysis toward the substrate Suc-Ala-Phe-Pro-Phe-pNA has been studied by 1H NMR spectroscopy. Using the bandshape analysis technique the rate of interconversion between the cis and trans isomers of the substrate could be measured in the presence of PPIase and under equilibrium conditions. The acceleration is inhibited by equimolar amounts of CsA. The results provide evidence that the PPIase catalysis is more complex than a simple exchange between two states. 相似文献
6.
Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or "quantitative" metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis.?Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values. 相似文献
7.
The heme environmental structures of lactoperoxidase (LP) have been studied by the use of hyperfine-shifted proton NMR and optical absorption spectra. The NMR spectra of the enzyme in native and cyanide forms in H2O indicated that the fifth ligand of the heme iron is the histidyl imidazole with an anionic character and that the sixth coordination site is possibly vacant. These structural characteristics are quite similar to those of horseradish peroxidase (HRP), suggesting that these may be prerequisite to peroxidase activity. The pH dependences of the spectra of LP in cyanide and azide forms showed the presence of two ionizable groups with pK values of 6 and 7.4 in the heme vicinity, which is consistent with the kinetic results. The group with pK = 7.4 is associated with azide binding to LP in a slow NMR exchange limit, which is in contrast to the fast entry of azide to HRP. 相似文献
8.
A rapid and simple approach using 1H NMR was developed for determination of liposomal encapsulation efficiency without the need for physical separation of entrapped and non-entrapped marker. Measurements were made using a marker (homocarnosine) with a pH-sensitive 1H chemical shift in the presence of a pH gradient across the phospholipid vesicle membrane, or by addition of the chemical shift reagent, thulium(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-(methylene phosphonic acid sodium salt) (TmDOTP5-). The measured encapsulation efficiencies for the liposomal dispersions prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) through extrusion using 50, 200 and 1000 nm polycarbonate membranes were found to be identical using the two different experimental approaches. 相似文献
9.
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Donghua H. Zhou Andrew J. Nieuwkoop Deborah A. Berthold Gemma Comellas Lindsay J. Sperling Ming Tang Gautam J. Shah Elliott J. Brea Luisel R. Lemkau Chad M. Rienstra 《Journal of biomolecular NMR》2012,54(3):291-305
Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6?kDa), a deuterated microcrystalline protein (DsbA, 21?kDa), a membrane protein (DsbB, 20?kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (??-synuclein, 14?kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100?% amide proton), fast magic-angle spinning conditions (40?kHz) and moderate proton decoupling power levels. Each H?CN pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution. 相似文献
10.
Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts 总被引:2,自引:0,他引:2
Beckonert O Keun HC Ebbels TM Bundy J Holmes E Lindon JC Nicholson JK 《Nature protocols》2007,2(11):2692-2703
Metabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here. They are often followed by more detailed statistical analysis or additional 2D NMR analysis for biomarker discovery. The standard acquisition time per sample is 4-5 min for a simple 1D spectrum, and both preparation and analysis can be automated to allow application to high-throughput screening for clinical diagnostic and toxicological studies, as well as molecular phenotyping and functional genomics. 相似文献
11.
Conformation of the ATP binding peptide in actin revealed by proton NMR spectroscopy 总被引:1,自引:0,他引:1
J A Barden 《Biochemistry》1987,26(19):6023-6030
The actin peptide 106-124 exists in a completely conserved region of the sequence and binds strongly to both ATP and tripolyphosphate. Binding particularly affects residues 116 and 118 and generally affects the two segments 115-118 and 121-124 [Barden, J. A., & Kemp, B. E. (1987) Biochemistry 26, 1471-1478]. One-dimensional nuclear Overhauser enhancement difference spectroscopy was used to detect molecular interactions between both adjacent and nonadjacent residues. The N-terminal segment 106-112 was found to be largely extended. A sharp bend was detected between Pro-112 and Lys-113. The triphosphate moiety binds to the strongly hydrophilic central segment of the peptide. Evidence was obtained for a reverse turn involving residues 121-124. Amide proton temperature coefficients and coupling constants provide evidence for a type I beta-turn. A model of the ATP binding site is proposed together with its relationship to other parts of the actin structure and to the phalloidin binding site. 相似文献
12.
The effects of the local anesthetics tetracaine, procaine (both charged at pH 6), and benzocaine (uncharged) on phospholipid liposomes have been investigated by 500 MHz 1H NMR Spectroscopy. All the drugs reverse the Pr3+ induced shifts of phospholipid resonances in the same sequence as they are shifted by addition of Pr3+: choline POCH2- > choline-CH2N > choline-N(CH3)3 > glycerol > glycerol > acyl C2 > acyl C3. The drug effects result from incorporation of positive charges (tetracaine and procaine) and from the induction of a conformational change of the phospholipid head group via an action on the lipid glycerol backbone (benzocaine). From titration experiments with tetracaine on liposomes containing Pr3+ inside and outside is derived that the drug passes the bilayer by transverse diffusion. Tetracaine partitions outside/inside at a ratio of 21. Changes in linewidths of the drug resonances when incorporated into the liposomes allow the conclusion that the tetracaine molecule is located in an elongated way between the lipid acyl chains with its nitrogen group near the glycerol backbone. Benzocaine, showing strong effects on the line shapes of the protons on C2 and C3 of the lipid acyl chains is also located near the glycerol backbone, the region with the strongest hydrophobic forces.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 30), Cardiology. 相似文献
13.
Jia V. Li Elaine Holmes Jennifer Keiser Jürg Utzinger 《International journal for parasitology》2009,39(5):547-558
In order to enhance our understanding of physiological and pathological consequences of a patent Schistosoma mansoni infection in the mouse, we examined the metabolic responses of different tissue samples recovered from the host animal using a metabolic profiling strategy. Ten female NMRI mice were infected with ∼80 S. mansoni cercariae each, and 10 uninfected age- and sex-matched animals served as controls. At day 74 post infection (p.i.), mice were killed and jejunum, ileum, colon, liver, spleen and kidney samples were removed. We employed 1H magic angle spinning-nuclear magnetic resonance spectroscopy to generate tissue-specific metabolic profiles. The spectral data were analyzed using multivariate modelling methods including an orthogonal signal corrected-projection to latent structure analysis and hierarchical principal component analysis to assess the differences and/or similarities in metabolic responses between infected and non-infected control mice. Most tissues obtained from S. mansoni-infected mice were characterized by high levels of amino acids, such as leucine, isoleucine, lysine, glutamine and asparagine. High levels of membrane phospholipid metabolites, including glycerophosphoryl choline and phosphoryl choline were found in the ileum, colon, liver and spleen of infected mice. Additionally, low levels of energy-related metabolites, including lipids, glucose and glycogen were observed in ileum, spleen and liver samples of infected mice. Energy-related metabolites in the jejunum, liver and renal medulla were found to be positively correlated with S. mansoni worm burden upon dissection. These findings show that a patent S. mansoni infection causes clear disruption of metabolism in a range of tissues at a molecular level, which can be interpreted in relation to the previously reported signature in a biofluid (i.e. urine), giving further evidence of the global effect of the infection. 相似文献
14.
J D Otvos M C Coffer S M Chen S Wehrli 《Biochemical and biophysical research communications》1987,145(3):1397-1403
The ratio of intensity (RI) of the plasma lipid methyl proton NMR resonance from two Carr-Purcell-Meiboom-Gill spectra acquired with a short (2.4 msec) and long (120 msec) pulse delay time is proposed to provide a potentially more sensitive and less variable marker of human malignancy than the linewidth parameter previously suggested (E.T. Fossel, J.M. Carr, and J. McDonagh (1986) N. Engl. J. Med. 315, 1369-1376). Linewidth and transverse (T2) relaxation data are presented which demonstrate that the observed correlation between methyl and methylene lipid linewidth and the methyl RI parameter arises from a combination of T2 differences and the relative amounts that fast- and slow-relaxing components contribute to the composite methyl resonance. 相似文献
15.
The acid dissociation constants for N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065) were determined in D2O by 360- and 500-MHz NMR spectroscopy. Results obtained at 0.21 M initial ionic strength and 26 degrees C were corrected to 25 degrees C yielding pKD1 = 8.28 +/- 0.04, pKD2 = 9.88 +/- 0.07, and pKD3 = 11.58 +/- 0.03. Correction of these values for the effect of the deuterium isotope upon the ionization reaction yielded dissociation constants in water of pKH1 = 7.69 +/- 0.09, pKH2 = 9.35 +/- 0.09, and pKH3 = 11.10 +/- 0.08. Analysis of the changes in chemical shift with pD indicated that the first ionization occurs largely through ionization of the thiol group (approximately 67%) and to a lesser extent the secondary ammonium group (approximately 30%), whereas the third ionization involves mainly the secondary ammonium group (approximately 65%) and to a lesser extent the primary ammonium group (approximately 30%). Estimates of the microscopic pK values for WR-1065 were also obtained from the results. 相似文献
16.
Basetti Madhu Greg L. Shaw Anne Y. Warren David E. Neal John R. Griffiths 《Metabolomics : Official journal of the Metabolomic Society》2016,12(7):120
Introduction
The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels.Objectives
To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS 1H NMR spectroscopy.Methods
Using non-destructive HR-MAS 1H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6).Results
Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies.Conclusions
The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo 1H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.17.
S L Stvolinski? D Dobrota V Mezeshova T Lipta? N Prona?ova L Zalibera A A Boldyrev 《Biokhimii?a (Moscow, Russia)》1992,57(9):1317-1323
NMR spectroscopy was used to study carnosine and anserine metabolism in rat tissues under intensive muscle loading. Muscle loading was accompanied by the dipeptide (predominantly anserine) accumulation in muscle tissues. Preliminary per os administration of carnosine (250 mg/kg of body mass) did not increase the dipeptide content in muscle tissues but diminished the lactate content in rat muscles under intensive muscle loading. 相似文献
18.
Van QN Issaq HJ Jiang Q Li Q Muschik GM Waybright TJ Lou H Dean M Uitto J Veenstra TD 《Journal of proteome research》2008,7(2):630-639
High-resolution, liquid state nuclear magnetic resonance (NMR) spectroscopy is a popular platform for metabolic profiling because the technique is nondestructive, quantitative, reproducible, and the spectra contain a wealth of biochemical information. Because of the large dynamic range of metabolite concentrations in biofluids, statistical analyses of one-dimensional (1D) proton NMR data tend to be biased toward selecting changes in more abundant metabolites. Although two-dimensional (2D) proton-proton experiments can alleviate spectral crowding, they have been mainly used for structural determination. In this study, 2D total correlation spectroscopy NMR was used to compare the global metabolic profiles of urine obtained from wild-type and Abcc6-knockout mice. The 2D data were compared to an improved 1D experiment in which signal contributions from macromolecules and the urea peak have been spectroscopically removed for more accurate quantitation of low-abundance metabolites. Although statistical models from both 1D and 2D data could differentiate samples acquired from the two groups of mice, only the 2D spectra allowed the characterization of statistically relevant changes in the low-abundance metabolites. While acquisition of the 2D data require more time, the data obtained resulted in a more meaningful and comprehensive metabolic profile, aided in metabolite identifications, and minimized ambiguities in peak assignments. 相似文献
19.
The structure of tRNA in solution was explored by NMR spectroscopy to evaluate the effect of divalent cations, especially zinc, which has a profound effect on the chromatographic behaviour of tRNAs in certain systems. The divalent ions Mg2+ and Zn2+ have specific effects on the imino proton region of the 1H NMR spectrum of valine transfer RNA (tRNA(Val] of Escherichia coli and of phenylalanine transfer RNA (tRNA(Phe] of yeast. The dependence of the imino proton spectra of the two tRNAs was examined as a function of Zn2+ concentration. In both tRNAs the tertiary base pair (G-15).(C-48) was markedly affected by Zn2+ (shifted downfield possibly by as much as 0.4 ppm); this is the terminal base pair in the augmented dihydrouridine helix (D-helix). Base pair (U-8).(A-14) in yeast tRNA(Phe) or (s4U-8).(A-14) in tRNA1(Val), which are stacked on (G-15).(C-48), was not affected by Zn2+, except when 1-2 Mg2+ ions per tRNA were also present. Another imino proton that may be affected by Zn2+ in both tRNAs is that of the tertiary base pair (G-19).(C-46). The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.3 ppm. This base pair helps to anchor the D-loop to the T psi C loop.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy 总被引:1,自引:0,他引:1
Yeung DK Lam SL Griffith JF Chan AB Chen Z Tsang PH Leung PC 《Chemistry and physics of lipids》2008,151(2):103-109
High-resolution 1H NMR spectroscopy as a complementary method in the analysis of human bone marrow fatty acid (FA) composition was examined. Marrow FA composition in 10 bone samples measured by NMR and gas chromatography (GC) were compared. NMR T1 relaxation time of FA was determined and reproducibility tests were performed to assess the variability. Good correlations were obtained between the NMR and GC results for omega-6 polyunsaturated fatty acid (PUFA) (Spearman r, 0.878), omega-3 PUFA (0.895), monounsaturated FA (0.964) and saturated FA (0.939). The NMR method tended to overestimate saturated FA and underestimate omega-3/omega-6 ratio compared to GC results. T1 relaxation time of marrow FA was 0.56-3.65s. Coefficient of variation of the NMR method was 0.6-8.2% in intra-experimental and 0.2-8.4% in inter-experimental measurements. This study demonstrates a complementary role for 1H NMR spectroscopy as an additional analytical tool in human lipid research. 相似文献