首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ellis EC  Antill EC  Kreft H 《PloS one》2012,7(1):e30535
Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems.  相似文献   

2.
Aim Analyses of species distributions are complicated by various origins of spatial autocorrelation (SAC) in biogeographical data. SAC may be particularly important for invasive species distribution models (iSDMs) because biological invasions are strongly influenced by dispersal and colonization processes that typically create highly structured distribution patterns. We examined the efficacy of using a multi‐scale framework to account for different origins of SAC, and compared non‐spatial models with models that accounted for SAC at multiple levels. Location We modelled the spatial distribution of an invasive forest pathogen, Phytophthora ramorum, in western USA. Methods We applied one conventional statistical method (generalized linear model, GLM) and one nonparametric technique (maximum entropy, Maxent) to a large dataset on P. ramorum occurrence (n = 3787) to develop four types of model that included environmental variables and that either ignored spatial context or incorporated it at a broad scale using trend surface analysis, a local scale using autocovariates, or multiple scales using spatial eigenvector mapping. We evaluated model accuracies and amounts of explained spatial structure, and examined the changes in predictive power of the environmental and spatial variables. Results Accounting for different scales of SAC significantly enhanced the predictive capability of iSDMs. Dramatic improvements were observed when fine‐scale SAC was included, suggesting that local range‐confining processes are important in P. ramorum spread. The importance of environmental variables was relatively consistent across all models, but the explanatory power decreased in spatial models for factors with strong spatial structure. While accounting for SAC reduced the amount of residual autocorrelation for GLM but not for Maxent, it still improved the performance of both approaches, supporting our hypothesis that dispersal and colonization processes are important factors to consider in distribution models of biological invasions. Main conclusions Spatial autocorrelation has become a paradigm in biogeography and ecological modelling. In addition to avoiding the violation of statistical assumptions, accounting for spatial patterns at multiple scales can enhance our understanding of dynamic processes that explain ecological mechanisms of invasion and improve the predictive performance of static iSDMs.  相似文献   

3.
Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one‐hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30′S and 71° 42′W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the “dispersal” models, “local ground heterogeneity” models, and “combined” models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground‐cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground‐cover conditions.  相似文献   

4.
A major goal and challenge of invasion ecology is to describe and interpret spatial and temporal patterns of species invasions. Here, we examined fish invasion patterns at four spatially structured and hierarchically nested scales across the contiguous United States (i.e., from large to small: region, basin, watershed, and sub-watershed). All spatial relationships in both richness and fraction between species groups (e.g., natives vs. exotics) were positive at large scales. However, contrary to predictions using null/neutral models, the patterns at small scales were hump-shaped (unimodal), not simply negative. The fractions of both domestic (introduced among watersheds within the USA) and foreign (introduced from abroad) exotics increased with area across scales but decreased within each scale. The foreign exotics exhibited the highest dominance (lowest evenness) and spatial variation in distribution, followed by domestic exotics and natives, although on average natives still occupy larger areas than domestic and foreign exotics. The results provide new insight into patterns and mechanisms of fish species invasions at multiple spatial scales in the United States.  相似文献   

5.
To model the invasion of Prunus serotina invasion within a real forest landscape we built a spatially explicit, non-linear Markov chain which incorporated a stage-structured population matrix and dispersal functions. Sensitivity analyses were subsequently conducted to identify key processes controlling the spatial spread of the invader, testing the hypothesis that the landscape invasion patterns are driven in the most part by disturbance patterns, local demographical processes controlling propagule pressure, habitat suitability, and long-distance dispersal. When offspring emigration was considered as a density-dependent phenomenon, local demographic factors generated invasion patterns at larger spatial scales through three factors: adult longevity; adult fecundity; and the intensity of self-thinning during stand development. Three other factors acted at the landscape scale: habitat quality, which determined the proportion of the landscape mosaic which was potentially invasible; disturbances, which determined when suitable habitats became temporarily invasible; and the existence of long distance dispersal events, which determined how far from the existing source populations new founder populations could be created. As a flexible “all-in-one” model, PRUNUS offers perspectives for generalization to other plant invasions, and the study of interactions between key processes at multiple spatial scales.  相似文献   

6.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

7.
Functional trait diversity is a popular tool in modern ecology, mainly used to infer assembly processes and ecosystem functioning. Patterns of functional trait diversity are shaped by ecological processes such as environmental filtering, species interactions and dispersal that are inherently spatial, and different processes may operate at different spatial scales. Adding a spatial dimension to the analysis of functional trait diversity may thus increase our ability to infer community assembly processes and to predict change in assembly processes following disturbance or land‐use change. Richness, evenness and divergence of functional traits are commonly used indices of functional trait diversity that are known to respond differently to large‐scale filters related to environmental heterogeneity and dispersal and fine‐scale filters related to species interactions (competition). Recent developments in spatial statistics make it possible to separately quantify large‐scale patterns (variation in local means) and fine‐scale patterns (variation around local means) by decomposing overall spatial autocorrelation quantified by Moran's coefficient into its positive and negative components using Moran eigenvector maps (MEM). We thus propose to identify the spatial signature of multiple ecological processes that are potentially acting at different spatial scales by contrasting positive and negative components of spatial autocorrelation for each of the three indices of functional trait diversity. We illustrate this approach with a case study from riparian plant communities, where we test the effects of disturbance on spatial patterns of functional trait diversity. The fine‐scale pattern of all three indices was increased in the disturbed versus control habitat, suggesting an increase in local scale competition and an overall increase in unexplained variance in the post‐disturbance versus control community. Further research using simulation modeling should focus on establishing the proposed link between community assembly rules and spatial patterns of functional trait diversity to maximize our ability to infer multiple processes from spatial community structure.  相似文献   

8.
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.  相似文献   

9.
外来植物入侵对土壤生物多样性和生态系统过程的影响   总被引:23,自引:0,他引:23  
随着科学家对生态系统地下部分的重视,评价外来植物入侵对土壤生态系统的影响成为当前入侵生态学领域的研究热点之一。本文综述了外来植物入侵对土壤微生物、土壤动物以及土壤碳、氮循环动态影响的研究,并探讨了其影响机制。已有的研究表明,植物入侵对土壤生物多样性及相关生态系统过程的影响均存在不一致的格局,影响机制也是复杂多样的。外来植物与土著植物凋落物的质与量、根系特征、物候等多种生理生态特性的差异可能是形成格局多样性和影响机制复杂性的最主要原因。今后,加强多尺度和多生态系统的比较研究、机制性研究、生物多样性和生态系统过程的整合性研究及土壤生态系统对植物入侵的反馈研究是评价外来植物入侵对土壤生态系统影响的发展趋势。  相似文献   

10.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

11.
This study was aimed to determine the patterns as well as the effects of biological, anthropogenic, and climatic factors on plant invasions in China. About 270 volumes of national and regional floras were employed to compile a naturalized flora of China. Habit, life form, origin, distribution, and uses of naturalized plants were also analyzed to determine patterns on invasion. Correlations between biological, anthropogenic and climatic parameters were estimated at province and regional scales. Naturalized species represent 1% of the flora of China. Asteraceae, Fabaceae, and Poaceae are the dominant families, but Euphorbiaceae and Cactaceae have the largest ratios of naturalized species to their global numbers. Oenothera, Euphorbia, and Crotalaria were the dominant genera. Around 50% of exotic species were introduced intentionally for medicinal purposes. Most of the naturalized species originated in tropical America, followed by Asia and Europe. Number of naturalized species was significantly correlated to the number of native species/log area. The intensity of plant invasion showed a pattern along climate zones from mesic to xeric, declining with decreasing temperature and precipitation across the nation. Anthropogenic factor, such as distance of transportation, was significantly correlated to plant invasions at a regional scale. Although anthropogenic factors were largely responsible for creating opportunities for exotic species to spread and establish, the local biodiversity and climate factors were the major factors shaping the pattern of plant invasions in China. The warm regions, which are the hot spots of local biodiversity, and relatively developed areas of China, furthermore, require immediate attentions.  相似文献   

12.
Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large‐scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non‐native species richness and (2) do non‐native species originate from higher diversity systems. A negative relationship between native and non‐native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non‐native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species‐rich systems inhibit establishment of generalist non‐native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non‐native species richness found at different spatial scales.  相似文献   

13.
Dispersal influences both the ecological and evolutionary dynamics of range expansion. While some studies have demonstrated a role for human-mediated dispersal during invasion, the genetic effects of such dispersal remain to be understood, particularly in terrestrial range expansions. In this study, we investigated multimodal dispersal during the range expansion of the invasive gecko Hemidactylus mabouia in Florida using 12 microsatellite loci. We investigated dispersal patterns at the regional scale (metropolitan areas), statewide scale (state of Florida), and global scale (including samples from the native range). Dispersal was limited at the smallest, regional scale, within metropolitan areas, as reflected by the presence of genetic structure at this scale, which is in agreement with a previous study in this same invasion at even smaller spatial scales. Surprisingly, there was no detectable genetic structure at the intermediate statewide scale, which suggests dispersal is not limited across the state of Florida. There was evidence of genetic differentiation between Florida and other areas where H. mabouia occurs, so we concluded that at the largest scale, dispersal was limited. Humans likely contributed to patterns of dispersal at all three scales but in different ways. Infrequent low-volume dispersal has occurred within regions, frequent high-volume dispersal has occurred across the state, and infrequent long-distance dispersal has occurred among continents at the global scale. This study highlights the importance of considering different modes of dispersal at multiple spatial scales to understand the dynamics of invasion and range expansion.  相似文献   

14.
Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites). We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal ability due to habitat fragmentation and the presence of geographical barriers.  相似文献   

15.
Widely occurred woody encroachment in grass‐dominated ecosystems has the potential to influence soil organic carbon (SOC) and total nitrogen (TN) pools at local, regional, and global scales. Evaluation of this potential requires assessment of both pool sizes and their spatial patterns. We quantified SOC and TN, their relationships with soil and vegetation attributes, and their spatial scaling along a catena (hill‐slope) gradient in the southern Great Plains, USA where woody cover has increased substantially over the past 100 years. Quadrat variance analysis revealed spatial variation in SOC and TN at two scales. The larger scale variation (40–45 m) was approximately the distance between centers of woody plant communities and their adjoining herbaceous patches. The smaller scale variation (10 m) appeared to reflect the local influence of shrubs on SOC and TN. Litter, root biomass, shrub, and tree basal area (a proxy for plant age) exhibited not only similar spatial scales, but also strong correlations with SOC and TN, suggesting invasive woody plants alter both the storage and spatial scaling of SOC and TN through ecological processes related primarily to root turnover and, to a lesser extent litter production, as mediated by time of occupancy. Forb and grass biomass were not significantly correlated with SOC and TN suggesting that changes in herbaceous vegetation have not been the driving force for the observed changes in SOC and TN. Because SOC and TN varied at two scales, it would be inappropriate to estimate SOC and TN pools at broad scales by extrapolating from point sampling at fine scales. Sampling designs that capture variation at multiple scales are required to estimate SOC and TN pools at broader scales. Knowledge of spatial scaling and correlations will be necessary to design field sampling protocols to quantify the biogeochemical consequences of woody plant encroachment at broad scales.  相似文献   

16.
Studying patterns of species invasions over time at multiple spatial scales may help us to elucidate important factors driving those patterns and how they change according to temporal or spatial resolution. Here we provide a large, long‐term, landscape‐scale study of the invasion of three Hieracium species using a dataset that encompasses vegetation change on 124 transects over 25 years across the lower eastern South Island of New Zealand. We investigated the relationships between key environmental and ecological factors and the invasion trajectories of H. lepidulum, H. pilosella and H. praealtum, at two spatial scales: (i) among‐transect colonization and (ii) within‐transect changes in frequency and per cent cover. Our results show that the colonization and spread of Hieracium species among and within transects reflect (i) the importance of initial environmental and biological conditions, (ii) that our sampling captured different periods of the invasion trajectories of each of the three species, and (iii) the effects of differences in life histories of the three species.  相似文献   

17.
Measuring genetic diversity requires selection of a spatial scale of analysis. Different levels of genetic structuring are revealed at different spatial scales, however, and the relative importance of factors driving genetic structuring varies along the spatial scale continuum. Unequal gene flow is a major factor determining genetic structure in plant populations at the local level, while the effect of selection imposed by environmental heterogeneity increases with the spatial scale of analysis. At a continental and global scale genetic structure of invasive plant populations is significantly affected by founder effect and propagule transport via human vectors. Although genetic analysis at one spatial scale provides only partial information about the invasion process, little published research reports such data for the same species at multiple scales. A multi-faceted approach to investigating the genetic structure of invasive plant species that incorporates sampling at different spatial and temporal scales would provide a more complete picture of the role of genetic forces in invasion.  相似文献   

18.
Aim Spatial scale is critical for understanding and managing biological invasions. In providing direction to managing alien plant invasions, much emphasis is placed on collecting spatially explicit data. However, insufficient thought is often given to how the data are to be used, frequently resulting in the incompatibility of the data for different uses. This paper explores the role of spatial scale in interpreting, managing and monitoring alien plant invasions in a large protected area. Location Kruger National Park, South Africa. Methods Using 27,000 spatially‐explicit records of invasive alien plants for the Kruger National Park (> 20,000 km2) we assessed alien plant species richness per cell at nine different scales of resolution. Results When assessing the patterns of alien plants at the various scales of resolution, almost identical results are obtained when working at scales of quarter‐degree grids and quaternary watersheds (the fourth level category in South Africa's river basin classification system). Likewise, insights gained from working at resolutions of 0.1–0.5 km and 1–5 km are similar. At a scale of 0.1 × 0.1 km cells, only 0.4% of the Kruger National Park is invaded, whereas > 90% of the park is invaded when mapped at the quarter‐degree cell resolution. Main conclusions Selecting the appropriate scale of resolution is crucial when evaluating the distribution and abundance of alien plant invasions, understanding ecological processes, and operationalizing management applications and monitoring strategies. Quarter‐degree grids and quaternary watersheds are most useful at a regional or national scale. Grid cells of 1 to 25 km2 are generally useful for establishing priorities for and planning management interventions. Fine‐scale data are useful for informing management in areas which are small in extent; they also provide the detail appropriate for assessing patterns and rates of invasion.  相似文献   

19.
Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources—including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science—now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.  相似文献   

20.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号