首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
2.
Sequence-based phylogenetic analyses typically are based on a small number of character sets and report gene trees which may not reflect the true species tree. We employed an EST mining strategy to suppress such incongruencies, and recovered the most robust phylogeny for five species of plant-parasitic nematode (Meloidogyne arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica), three closely related tylenchid taxa (Heterodera glycines, Globodera pallida, and G. rostochiensis) and a distant taxon, Caenorhabditis elegans. Our multiple-gene approach is based on sampling more than 80,000 publicly available tylenchid EST sequences to identify phylum-wide orthologues. Bayesian inference, minimum evolution, maximum likelihood and protein distance methods were employed for phylogenetic reconstruction and hypothesis tests were constructed to elucidate differential selective pressures across the phylogeny for each gene. Our results place M. incognita and M. javanica as sister taxa, with M. arenaria as the next closely related nematode. Significant differences in selective pressure were revealed for some genes under some hypotheses, though all but one gene are exclusively under purifying selection, indicating conservation across the orthologous groups. This EST-based multi-gene analysis is a first step towards accomplishing genome-wide coverage for tylenchid evolutionary analyses.  相似文献   

3.
Among root knot nematodes of the genus Meloidogyne, the polyploid obligate mitotic parthenogens M. arenaria, M. javanica, and M. incognita are widespread and common agricultural pests. Although these named forms are distinguishable by closely related mitochondrial DNA (mtDNA) haplotypes, detailed sequence analyses of internal transcribed spacers (ITSs) of nuclear ribosomal genes reveal extremely high diversity, even within individual nematodes. This ITS diversity is broadly structured into two very different groups that are 12%-18% divergent: one with low diversity (< 1.0%) and one with high diversity (6%-7%). In both of these groups, identical sequences can be found within individual nematodes of different mtDNA haplotypes (i.e., among species). Analysis of genetic variance indicates that more than 90% of ITS diversity can be found within an individual nematode, with small but statistically significant (5%-10%; P < 0.05) variance distributed among mtDNA lineages. The evolutionarily distinct parthenogen M. hapla shows a similar pattern of ITS diversity, with two divergent groups of ITSs within each individual. In contrast, two diploid amphimictic species have only one lineage of ITSs with low diversity (< 0.2%). The presence of divergent lineages of rDNA in the apomictic taxa is unlikely to be due to differences among pseudogenes. Instead, we suggest that the diversity of ITSs in M. arenaria, M. javanica, and M. incognita is due to hybrid origins from closely related females (as inferred from mtDNA) and combinations of more diverse paternal lineages.  相似文献   

4.
Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) Jesup (Max-Q, non-ergot producing endophyte) and iv) Georgia 5 (E+). Peach was included as the control. Peach supported greater (P ≤ 0.05) reproduction of M. incognita than all tall fescue cultivars. Differences in reproduction were not detected among the tall fescue cultivars and all cultivars were rated as either poor or nonhosts for M. incognita. Suppression of M. incognita reproduction was not influenced by endophyte status. In two other greenhouse experiments, host susceptibility of tall fescue grasses to two M. incognita isolates (BY-peach isolate and GA-peach isolate) did not appear to be related to fungal endophyte strain [i.e., Jesup (Max-Q; nontoxic endophyte strain) vs. Bulldog 51 (toxic endophyte strain)]. Host status of tall fescue varied with species of root-knot nematode. Jesup (Max-Q) was rated as a nonhost for M. incognita (BY-peach isolate and GA-peach isolate) and M. hapla, a poor host for M. javanica and a good host for M. arenaria. Bulldog 51 tall fescue was also a good host for M. arenaria and M. javanica, but not M. incognita. Jesup (Max-Q) tall fescue may have potential as a preplant control strategy for M. incognita and M. hapla in southeastern and northeastern United States, respectively.  相似文献   

5.
M. chitwoodi and M. fallax populations are clustered and separated from the other species studied. The genetic diversity observed for M. incognita, M. arenaria, M. javanica, M. hapla, and M. mayaguensis correlates well with the previously validated species. Two main groups can be identified within the M. chitwoodi/M. fallax cluster, the first group comprises only M. chitwoodi populations whereas the second group is made of M. chitwoodi and M. fallax populations. Moreover, M. chitwoodi displays a higher genetic diversity than M. fallax and is characterised by the presence of several clusters.  相似文献   

6.
Sequence variability and distribution of a newly characterized MPA2 satellite DNA family are described in five root-knot nematode species of the genus Meloidogyne, the mitotic parthenogens M. paranaensis, M. incognita, M. arenaria and M. javanica, and the meiotic/mitotic M. hapla (isolates A and B, respectively). The lack of distinctive mutations and the considerable contribution (40.8%) of ancestral changes disclose an ancient satellite DNA which existed in the common ancestor of extant parthenogenetic species in the same or similar form and remained preserved for a period of at least 43 My. Nonuniformly distributed polymorphic sites along the satellite monomer suggest differences in constraints acting on particular sequence segments. Sequence diversity is clearly unaffected by significant differences in genomic abundance of the MPA2 satellite DNA in the examined species. Observed results suggest that the dynamics of this satellite DNA family might be in the first instance a consequence of characteristics of its nucleotide sequence and possible constraints imposed on it. Under conditions of mitotic and meiotic parthenogenesis, slow accumulation of mutations and slow replacement of old MPA2 sequence variants with new ones may be equivalent to the dynamics of some satellite DNA sequences conserved for extremely long evolutionary periods in sexual species.  相似文献   

7.
Total protein variation (up to ninety-five different positions) was revealed by two-dimensional electrophoresis (2-DE) in 18 isolates from populations of M. arenaria (6 isolates), M. incognita (10), M. javanica (1) plus an unclassified isolate in a previously reported study. Isolates of M. arenaria, M. javanica, Meloidogyne sp., and M. incognita formed two separate groups defined on the basis of two sets of protein positions that could be considered as diagnostic characters, but we could not identify these proteins by MALDI-TOF. To identify these marker positions, nano-liquid chromatography as peptides separation method was coupled to an ion-trap mass spectrometer for induced real-time fragmentation of eluted peptides. Group diagnostic proteins for M. incognita and M. arenaria were in-gel digested and on line analyzed by tandem mass spectrometry (LC-MS/MS). Six proteins out of seven selected spots were unambiguously identified by the analysis of the corresponding MS/MS (MS2) spectrum from parent ions fragmentation: Actin, Enolase, CG3752-PA protein similar to Aldehyde Dehydrogenase, HSP-60 and Translation initiation factor elF-4A. In M. incognita sample, de novo sequencing experiment of doubly charged ion at m/z=936.9 Da in spot 29 identified as enolase, reveals three residue substitutions (K to T, N to T, and D to E) when tentative sequence was compared with that of Anisakis simplex and Onchocerca volvulus enolase, thus three SNPs (single nucleotide polymorphisms) were also possibly identified.  相似文献   

8.
Root knot nematodes are causing serious losses in protected cultivation fields in the West Mediterranean region of Turkey. Correct and confident identification of the plant parasitic nematodes is important for vegetable growing and breeding. Therefore, ninety-five populations of plant parasitic nematodes were collected from regional greenhouses. Previously described species-specific primers were used to identify Meloidogyne populations. The present study indicated that SEC-1F/SEC-1R and INCK14F-INCK14R primers for identifying of M. incognita, Fjav/Rjav and DJF/DJR primers for M. javanica and Far/Rar for M. arenaria primers can be effective tools to identify the Turkish root-knot nematode species. Dissemination ratios of the population were 64.2%, 28.4% and 7.3% for Meloidogyne incognita, M. javanica and M. arenaria, respectively. The results showed that M. incognita was the prominent root-knot nematode species in the West Mediterranean coastal areas of Turkey.  相似文献   

9.
The amplifiable AUD1 element of Streptomyces lividans 66 consists of two copies of a 4.7 kb sequence flanked by three copies of a 1 kb sequence. The DNA sequences of the three 1 kb repeats were determined. Two copies (left and middle repeats) were identical: (1009 by in length) and the right repeat was 1012 bp long and differed at 63 positions. The repeats code for open reading frames (ORFs) with typical Streptomyces codon usage, which would encode proteins of about 36 kD molecular weight. The sequences of these ORFs suggest that they specify DNA-binding proteins and potential palindromic binding sites are found adjacent to the genes. The putative amplification protein encoded by the right repeat was expressed in Escherichia coli.  相似文献   

10.
The amplifiable AUD1 element of Streptomyces lividans 66 consists of two copies of a 4.7 kb sequence flanked by three copies of a 1 kb sequence. The DNA sequences of the three 1 kb repeats were determined. Two copies (left and middle repeats) were identical: (1009 by in length) and the right repeat was 1012 bp long and differed at 63 positions. The repeats code for open reading frames (ORFs) with typical Streptomyces codon usage, which would encode proteins of about 36 kD molecular weight. The sequences of these ORFs suggest that they specify DNA-binding proteins and potential palindromic binding sites are found adjacent to the genes. The putative amplification protein encoded by the right repeat was expressed in Escherichia coli.  相似文献   

11.
The internal structure of the 37 kb long Balbiani ring 2 (BR 2) gene in Chironomus tentans has been studied by analysis of a collection of cloned cDNA sequences and in genomic Southern blot analysis with the cDNA sequences used as probes. The BR 2 gene contains two types of tandemly arranged major repeat units ˜200 bp long, represented in our study by the pCt 7 and the pCt 63 cDNA inserts. The pCt 7 major repeat units are arranged in one or possibly a few blocks and cover ˜10 kb of the gene; the pCt 63 units form one uninterrupted block, 22 kb in length. Genomic Southern blot hybridizations revealed a number of sequence variants of the pCt 7 major repeat unit. In contrast, the ˜100 copies of the pCt 63 major repeat unit seem to be almost identical. The pCt 7 major repeat unit, 180 bp in length, is organized in the same way as the previously described 215 bp long pCt 63 major repeat, i.e., it contains a repetitive and a non-repetitive part. Moreover, the two major repeat units show a high degree of sequence homology, indicating that the pCt 7 and pCt 63 sequence blocks within the Br 2 gene have evolved through stepwise amplification from a common ancestral sequence.  相似文献   

12.
13.
南靖柑桔的福建根结线虫(Meloidogyne fnjianensis)经扫描电镜观察显示它跟四种常见的根结线虫有明显区别,最明显的区别在于其雌虫的头部结构——唇盘呈“X”状,唇盘和中唇之间有沟隔开。此外,雄虫头区无环纹、幼虫唇盘和中唇呈短哑铃状,也有别于其近似种南方根结线虫和花生根结线虫,而其幼虫头区平滑或偶具一条短环纹也有别于前者。  相似文献   

14.
Amplified fragment length polymorphism (AFLP) analysis has been used to characterize 15 root-knot nematode populations belonging to the three parthenogenetic species Meloidogyne arenaria , M. incognita and M. javanica. Sixteen primer combinations were used to generate AFLP patterns, with a total number of amplified fragments ranging from 872 to 1087, depending on the population tested. Two kinds of polymorphic DNA fragments could be distinguished: bands amplified in a single genotype, and bands polymorphic between genotypes (i.e. amplified in not all but at least two genotypes). Based on presence/absence of amplified bands and pairwise similarity values, all the populations tested were clustered according to their specific status. Significant intraspecific variation was revealed by AFLP, with DNA fragments polymorphic among populations within each of the three species tested. M. arenaria appeared as the most variable species, while M. javanica was the least polymorphic. Within each specific cluster, no general correlation could be found between genomic similarity and geographical origin of the populations. The results reported here showed the ability of the AFLP procedure to generate markers useful for genetic analysis in root-knot nematodes.  相似文献   

15.
The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same direction. The protein genes are the same as 12 of the 13 protein genes found in other metazoan mtDNAs: Cyt b, cytochrome b; COI-III, cytochrome c oxidase subunits I-III; ATPase6, Fo ATPase subunit 6; ND1-6 and 4L, NADH dehydrogenase subunits 1-6 and 4L: a gene for ATPase subunit 8, common to other metazoan mtDNAs, has not been identified in nematode mtDNAs. The C. elegans and A. suum mtDNA molecules both include an apparently noncoding sequence that contains runs of AT dinucleotides, and direct and inverted repeats (the AT region: 466 and 886 ntp, respectively). A second, apparently noncoding sequence in the C. elegans and A. suum mtDNA molecules (109 and 117 ntp, respectively) includes a single, hairpin-forming structure. There are only 38 and 89 other intergenic nucleotides in the C. elegans and A. suum mtDNAs, and no introns. Gene arrangements are identical in the C. elegans and A. suum mtDNA molecules except that the AT regions have different relative locations. However, the arrangement of genes in the two nematode mtDNAs differs extensively from gene arrangements in all other sequenced metazoan mtDNAs. Unusual features regarding nematode mitochondrial tRNA genes and mitochondrial protein gene initiation codons, previously described by us, are reviewed. In the C. elegans and A. suum mt-genetic codes, AGA and AGG specify serine, TGA specifies tryptophan and ATA specifies methionine. From considerations of amino acid and nucleotide sequence similarities it appears likely that the C. elegans and A. suum ancestral lines diverged close to the time of divergence of the cow and human ancestral lines, about 80 million years ago.  相似文献   

16.
本文报道对杨梅根结线虫病的研究及病原鉴定结果。该病症状为:病树根部形成大小不一的根结,内有乳白色囊状雌虫及棕色卵囊;后期根结腐烂,病树叶片黄化脱落,梢枯乃至死亡。病原鉴定确认,引起该病的根结线虫有3个种:爪哇根结线虫(Meloidogyne javanica)、南方根结线虫(M.incognita)和北方根结线虫(M. hapla)。爪哇根结线虫为优势种。  相似文献   

17.
RAPD markers were used to characterize the genetic diversity and relationships of root-knot nematodes (RKN) (Meloidogyne spp.) in Brazil. A high level of infraspecific polymorphism was detected in Meloidogyne arenaria, Meloidogyne exigua, and Meloidogyne hapla compared with the other species tested. Phylogenetic analyses showed that M. hapla and M. exigua are more closely related to one another than they are to the other species, and illustrated the early divergence of these meiotically reproducing species from the mitotic ones. To develop a PCR-based assay to specifically identify RKN associated with coffee, three RAPD markers were further transformed into sequence-characterized amplified region (SCAR) markers specific for M. exigua, Meloigogyne incognita and Meloidogyne paranaensis, respectively. After PCR using the SCAR primers, the initial polymorphism was retained as the presence or absence of amplification. Moreover, multiplex PCR using the three pairs of SCAR primers in a single reaction enabled the unambiguous identification of each species, even in mixtures. Therefore, it is concluded that the method developed here has potential for application in routine diagnostic procedures.  相似文献   

18.
19.
S T Case  R L Summers  A G Jones 《Cell》1983,33(2):555-562
pCtBR2-2 is a genomic clone from Chironomus tentans that hybridized in situ to Balbiani ring 2 (BR2) on salivary gland polytene chromosome IV. DNA sequencing indicated that the insert contained nearly four copies of a 180 bp tandemly repeated nucleotide sequence that was distinctly different from a previously reported BR2 repeat. Sequence titration experiments detected about 70 copies of the 180 bp repeat per haploid genome, which would correspond to approximately 34% of a 37 kb BR2 gene. Each 180 bp repeat included a conserved 90 bp segment whose sequence was internally nonrepeating (INR), and a variable 90 bp repeated (R) segment comprised of three 30 bp repeats that may have evolved from a 9 bp consensus sequence. Results presented here raise the distinct possibility that other BR genes may contain significantly different repeated sequences that have not been identified.  相似文献   

20.
Total protein variation as revealed by two-dimensional electrophoresis (2D-E) was studied in 18 isolates from populations of Meloidogyne arenaria (six isolates), Meloidogyne incognita (10 isolates), and Meloidogyne javanica (one isolate) plus an unclassified isolate. Gels (80 x 60 x 0.75 mm) were silverstained and digitized in order to compare their protein patterns. Optical density and position of protein patterns were measured using statistical cluster analysis and computer-assisted image analysis software. Only those protein stains or positions that were clearly defined (i.e., without background) were considered. The number of positions in gels ranged from 86 to 203. Each of these positions had 95 clearly expressed proteins that were present in at least two replicates for each isolate. Spot position was considered a taxonomical character with two different states: presence (1) and absence (0). Accordingly, genetic distance was estimated among isolates and species, and a phylogenetic tree was constructed following the cladistic approach based on maximum parsimony analysis. Isolates of M. arenaria--M. javanica--Meloidogyne sp. and of M. incognita formed two separate monophyletic groups. Both groups were clearly defined on the basis of two sets of protein positions that can be considered as diagnostic characters. An attempt to identify these proteins by mass spectrometry was made. Group diagnostic proteins for M. incognita and M. arenaria (and for other proteins common to all isolates) were distinguished by protonated mass signals in the MALDI fingerprinting spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号