首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid composition is an important determinant of seed oil quality. Overall, 72 QTL for 12 fatty acid traits that control seed oil composition were identified in four recombinant inbred line (RIL) populations (Ler-0 × Sha, Ler-0 × Col-4, Ler-2 × Cvi, Ler-0 × No-0) of Arabidopsis thaliana. The identified QTL explained 3.2–79.8% of the phenotypic variance; 33 of the 59 QTL identified in the Ler-0 × Sha and the Ler-0 × Col RIL populations co-located with several a priori candidate genes for seed oil composition. QTL for fatty acids 18:1, 18:2, 22:1, and fatty acids synthesized in plastids was identified in both Ler-0 × Sha and Ler-0 × Col-4 RIL populations, and QTL for 16:0 was identified in the Ler-0 × Sha and Ler-0 × No-0 RIL populations providing strong support for the importance of these QTL in determining seed oil composition. We identified melting point QTL in three RIL populations, and fatty acid QTL collocated with two of them, suggesting that the loci could be under selection for altering the melting point of seed oils to enhance adaptation and could be useful for breeding purposes. Nuclear-cytoplasmic interactions and epistasis were rare. Analysis of the genetic correlations between these loci and other fatty acids indicated that these correlations would tend to strongly enhance selection for desirable fatty acids.  相似文献   

2.
Natural variation for primary root growth response to high Ca stress in Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) under high Calcium (40 mM CaCl2 ) conditions. The genetic basis of this variation was further investigated by QTL analysis using recombinant inbred lines from Landsberg erecta (Ler)×Cape Verde Islands (Cvi) cross. Four QTLs were identified in chromosome 1, 2 and 5,and named response to high Calcium (RHCA) 1–4. The three QTLs (RHCA1, RHCA2 and RHCA4) were further confirmed by analysis of near isogenic lines harboring Cvi introgression fragments in Ler background. Real-time PCR analysis showed that several genes associated with high Ca response including SMT1 and XHT25 have changed expression pattern between Ler and near isogenic lines. These results were useful for detecting molecular mechanisms of plants for high Ca adaption.  相似文献   

3.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

4.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

5.
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B efficiency coefficient (BEC) and seed yield under low B conditions (SYLB) were investigated by solution culture in two separate experiments in an Arabidopsis recombinant inbred line (RIL) population. Both of the traits studied exhibited high transgressive variation in the RIL population, and, in total, five and three QTL were identified for BEC and SYLB, respectively. Three of the five QTL, including the QTL, AtBE1-2, that has a large effect on the BEC, were found at the interval of the corresponding QTL for SYLB in both experiments. The close genetic relationship between BEC and SYLB was further confirmed by conditional QTL mapping in the RIL population and unconditional QTL mapping in an AtBE1-2-segregated F(2) population. Epistatic interactions for the tested traits were analysed, and were found to be widespread in the detected QTL of Arabidopsis in the RIL population. Comparison of the QTL interval for B efficiency with reported B-related genes showed that 10 B-related genes, together with one BOR1 homolog (BOR5, At1g74810) were located in the QTL region of AtBE1-2. These results suggest that natural variation in B efficiency in Arabidopsis has a complex molecular basis. They also provide a basis for fine mapping and cloning of the B-efficiency genes, with the ultimate aim of discovering the physiological mechanism of action of the genes.  相似文献   

6.
Juenger TE  Sen S  Stowe KA  Simms EL 《Genetica》2005,123(1-2):87-105
A major goal of evolutionary biology is to understand the genetic architecture of the complex quantitative traits that may lead to adaptations in natural populations. Of particular relevance is the evaluation of the frequency and magnitude of epistasis (gene–gene and gene–environment interaction) as it plays a controversial role in models of adaptation within and among populations. Here, we explore the genetic basis of flowering time in Arabidopsis thaliana using a series of quantitative trait loci (QTL) mapping experiments with two recombinant inbred line (RIL) mapping populations [Columbia (Col) x Landsberg erecta (Ler), Ler x Cape Verde Islands (Cvi)]. We focus on the response of RILs to a series of environmental conditions including drought stress, leaf damage, and apical damage. These data were explicitly evaluated for the presence of epistasis using Bayesian based multiple-QTL genome scans. Overall, we mapped fourteen QTL affecting flowering time. We detected two significant QTL–QTL interactions and several QTL–environment interactions for flowering time in the Ler x Cvi population. QTL–environment interactions were due to environmentally induced changes in the magnitude of QTL effects and their interactions across environments – we did not detect antagonistic pleiotropy. We found no evidence for QTL interactions in the Ler x Col population. We evaluate these results in the context of several other studies of flowering time in Arabidopsis thaliana and adaptive evolution in natural populations.  相似文献   

7.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

8.
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.  相似文献   

9.
Dobón A  Canet JV  Perales L  Tornero P 《Planta》2011,234(4):671-684
Salicylic acid (SA) is a phytohormone required for a full resistance against some pathogens in Arabidopsis, and NPR1 (Non-Expressor of Pathogenesis Related Genes 1) is the only gene with a strong effect on resistance induced by SA which has been described. There can be additional components of SA perception that escape the traditional approach of mutagenesis. An alternative to that approach is searching in the natural variation of Arabidopsis. Different methods of analyzing the variation between ecotypes have been tried and it has been found that measuring the growth of a virulent isolate of Pseudomonas syringae after the exogenous application of SA is the most effective one. Two ecotypes, Edi-0 and Stw-0, have been crossed, and their F2 has been studied. There are two significant quantitative trait loci (QTLs) in this population, and there is one QTL in each one of the existing mapping populations Col-4 × Laer-0 and Laer-0 × No-0. They have different characteristics: while one QTL is only detectable at low concentrations of SA, the other acts after the point of crosstalk with methyl jasmonate signalling. Three of the QTLs have candidates described in SA perception as NPR1, its interactors, and a calmodulin binding protein.  相似文献   

10.
In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits.  相似文献   

11.
An F2 population of pea (Pisum sativum L.) consisting of 174 plants was analysed by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) techniques. Ascochyta pisi race C resistance, plant height, flowering earliness and number of nodes were measured in order to map the genes responsible for their variation. We have constructed a partial linkage map including 3 morphological character genes, 4 disease resistance genes, 56 RFLP loci, 4 microsatellite loci and 2 RAPD loci. Molecular markers linked to each resistance gene were found: Fusarium wilt (6 cM from Fw), powdery mildew (11 cM from er) and pea common Mosaic virus (15 cM from mo). QTLs (quantitative traits loci) for Ascochyta pisi race C resistance were mapped, with most of the variation explained by only three chromosomal regions. The QTL with the largest effect, on chromosome 4, was also mapped using a qualitative, Mendelian approach. Another QTL displayed a transgressive segregation, i.e. the parental line that was susceptible to Ascochyta blight had a resistance allele at this QTL. Analysis of correlations between developmental traits in terms of QTL effects and positions suggested a common genetic control of the number of nodes and earliness, and a loose relationship between these traits and height.  相似文献   

12.
To clarify the genetic basis of extremely early heading in rice, we conducted quantitative trait locus (QTL) analyses using F2 populations from two genetically wide cross combinations, Hayamasari/Kasalath (HaF2) and Hoshinoyume/Kasalath (HoF2). Hayamasari and Hoshinoyume are extremely early-heading japonica cultivars. Photoperiod sensitivity is completely lost in Hayamasari and weak in Hoshinoyume. Three QTLs, QTL(chr6), QTL(chr7), and QTL(chr8), for days-to-heading (DTH) in HaF2 were detected on chromosomes 6, 7, and 8, respectively, and QTL(chr6) and QTL(chr7) were detected in HoF2. On the basis of the chromosomal locations, QTL(chr6), QTL(chr7), and QTL(chr8) may be likely to be Hd1, Hd4, and Hd5, respectively, which had been detected previously as QTLs for DTH in an F2 population of Nipponbare × Kasalath. Alleles of QTL(chr7) decreased DTH dramatically in both Hayamasari and Hoshinoyume, suggesting that QTL(chr7) has a major role in determining extremely early heading. In addition, allele-specific interactions were detected between QTL(chr6), QTL(chr7) and QTL(chr8). This result suggests that not only allelic differences but also epistatic interactions contribute to extremely early heading. QTL(chr8) was detected in HaF2, but not in HoF2, suggesting that it determines the difference in DTH between Hayamasari and Hoshinoyume. A major QTL was also detected in the region of QTL(chr8) in QTL analysis using an F2 population of Hayamasari × Hoshinoyume. This result supports the idea that QTL(chr8) is a major factor that determines the difference in DTH between Hayamasari and Hoshinoyume, and is involved in photoperiod sensitivity.  相似文献   

13.
Mapping loci controlling flowering time in Brassica oleracea   总被引:6,自引:0,他引:6  
The timing of the transition from vegetative to reproductive phase is a major determinant of the morphology and value of Brassica oleracea crops. Quantitative trait loci (QTLs) controlling flowering time in B. oleracea were mapped using restriction fragment length polymorphism (RFLP) loci and flowering data of F3 families derived from a cabbage by broccoli cross. Plants were grown in the field, and a total of 15 surveys were made throughout the experiment at 5–15 day intervals, in which plants were inspected for the presence of flower buds or open flowers. The flowering traits used for data analysis were the proportion of annual plants (PF) within each F3 family at the end of the experiment, and a flowering-time index (FT) that combined both qualitative (annual/biennial) and quantitative (days to flowering) information. Two QTLs on different linkage groups were found associated with both PF and FT and one additional QTL was found associated only with FT. When combined in a multi-locus model, all three QTLs explained 54.1% of the phenotypic variation in FT. Epistasis was found between two genomic regions associated with FT. Comparisons of map positions of QTLs in B. oleracea with those in B. napus and B. rapa provided no evidence for conservation of genomic regions associated with flowering time between these species.  相似文献   

14.
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat growing regions of the world. The development of disease resistant cultivars is considered as the most effective control strategy for spot blotch. An intervarietal mapping population in the form of recombinant inbred lines (RILs) was developed from a cross ‘Yangmai 6’ (a Chinese source of resistance) × ‘Sonalika’ (a spot blotch susceptible cultivar). The 139 single seed descent (SSD) derived F6, F7, F8 lines of ‘Yangmai 6’ × ‘Sonalika’ were evaluated for resistance to spot blotch in three blocks in each of the 3 years. Joint and/or single year analysis by composite interval mapping (CIM) and likelihood of odd ratio (LOD) >2.2, identified four quantitative trait loci (QTL) on the chromosomes 2AL, 2BS, 5BL and 6DL. These QTLs were designated as QSb.bhu-2A, QSb.bhu-2B, QSb.bhu-5B and QSb.bhu-6D, respectively. A total of 63.10% of phenotypic variation was explained by these QTLs based on the mean over years. Two QTLs on chromosomes 2B and 5B with major effects were consistent over 3 years. All QTL alleles for resistance were derived from the resistant parent ‘Yangmai 6’.  相似文献   

15.
On the basis of eight independent quantitative trait loci (QTL) studies of ethanol (alcohol) preference drinking in mice, a meta-analysis was carried out to examine the replicability of QTLs across studies and to enhance the power of QTL detection and parameter estimation. To avoid genetic heterogeneity, we analyzed only studies of mapping populations derived from the C57BL/6 (B6) and DBA/2 (D2) inbred progenitor strains. Because these studies were carried out in five different laboratories, there were substantial differences in testing procedure, data analysis, and especially in the choice of mapping population (BXD recombinant inbred strains, F2, backcross, selected lines, or congenic strains). Despite this, we found several QTLs that were sufficiently robust as to appear consistently across studies given the strengths and weaknesses of the mapping populations employed. These were on Chromosomes (Chrs) 2 (proximal to mid), 3 (mid to distal), 4 (distal), and 9 (proximal to mid). The P value for each of these QTLs, combined across all applicable studies, ranged from 10−7 to 10−15, with the additive effect of each QTL accounting for 3–5% of the trait variance extrapolated to an F2 population. Two other QTLs on Chrs 1 (distal) and 11 (mid) were less consistent, but still reached overall significance (P < .0001). Received: 18 April 2001 / Accepted: 25 July 2001  相似文献   

16.
Quantitative trait loci (QTL) analysis of aluminium (Al) tolerance was performed using Ler/Cvi recombinant inbred (RI) lines of Arabidopsis thaliana. Relative root length (RRL) (root length with 4 µm Al/root length with no Al at pH 5.0) on day 5 was used as the Al tolerance index for QTL analysis. Al tolerance judged by RRL was well correlated to tolerance judged by other indexes, including accumulation of callose, reactive oxygen species in the root apex and growth performance on acid soil containing a large amount of exchangeable Al. Using data sets with an hb2 of 0.91, two QTLs were detected at the top of chromosome 1 and bottom of chromosome 3. These QTLs explained 40 and 16% of the phenotypic variation of Al tolerance, respectively, and the positive effect of the Cvi allele. The QTL on chromosome 1 overlapped with a major QTL in another recombinant inbred population, and is possibly related to malate excretion. A complete pair-wise search revealed 11 sets of epistatic interacting loci pairs, which accounted for the transgressive segregation among the RI population. Several epistatic interactions shared the same chromosomal region, indicating the possible involvement of regulatory proteins in Al tolerance in Arabidopsis.  相似文献   

17.
The usefulness of marker-assisted selection (MAS) to develop salt-tolerant breeding lines from a F2 derived from L. esculentum x L. pimpinellifolium has been studied. Interval mapping methodology of quantitative trait locus (QTL) analysis was used to locate more precisely previously detected salt tolerance QTLs. A new QTL for total fruit weight under salinity (TW) near TG24 was detected. Most of the detected QTLs [3 for TW, 5 for fruit number, (FN) and 4 for fruit weight (FW)] had low R 2 values, except the FW QTL in the TG180-TG48 interval, which explains 36.6% of the total variance. Dominant and overdominant effects were detected at the QTLs for TW, whereas gene effects at the QTLs for FJV and FW ranged from additive to partial dominance. Phenotypic selection of F2 familes and marker-assisted selection of F3 families were carried out. Yield under salinity decreased in the F2 generation. F3 means were similar to those of the F1 as a consequence of phentoypic selection. The most important selection response for every trait was obtained from the F3 to F4 where MAS was applied. While F3 variation was mainly due to the within-family component, in the F4 the FN and FW between-family component was larger than the within-family one, indicating an efficient compartmentalization and fixation of QTLs into the F4 families. Comparison of the yield of these families under control versus saline conditions showed that fruit weight is a key trait to success in tomato salt-tolerance improvement using wild Lycopersicon germplasm. The QTLs we have detected under salinity seem to be also working under control conditions, although the interaction family x treatment was significant for TW, thereby explaining the fact that the selected families responded differently to salinity.  相似文献   

18.
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS‐10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS‐10 and B6. We then produced congenic strains to fine‐map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121–129.068 Mb; build 37) appeared to account for all the difference between CSS‐10 and B6. The smaller congenic strain (Line 2: 127.277–129.068 Mb) was intermediate between CSS‐10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis‐eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two‐stage approaches that seek to use coarse mapping to identify large regions followed by fine‐mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine‐mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine‐mapping QTLs .  相似文献   

19.
The identification of molecular markers that are closely linked to gene(s) in Gossypium barbadense L. accession GB713 that confer a high level of resistance to reniform nematode (RN), Rotylenchulus reniformis Linford & Oliveira, would be very useful in cotton breeding programs. Our objectives were to determine the inheritance of RN resistance in the accession GB713, to identify SSR markers linked with RN resistance QTLs, and to map these linked markers to specific chromosomes. We grew and scored plants for RN reproduction in the P1, P2, F1, F2, BC1P1, and BC1P2 generations from the cross of GB713 × Acala Nem-X. The generation means analysis using the six generations indicated that one or more genes were involved in the RN resistance of GB713. The interspecific F2 population of 300 plants was genotyped with SSR molecular markers that covered most of the chromosomes of Upland cotton (G. hirsutum L.). Results showed two QTLs on chromosome 21 and one QTL on chromosome 18. One QTL on chromosome 21 was at map position 168.6 (LOD 28.0) flanked by SSR markers, BNL 1551_162 and GH 132_199 at positions 154.2 and 177.3, respectively. A second QTL on chromosome 21 was at map position 182.7 (LOD 24.6) flanked by SSR markers BNL 4011_155 and BNL 3279_106 at positions 180.6 and 184.5, respectively. Our chromosome 21 map had 61 SSR markers covering 219 cM. One QTL with smaller genetic effects was localized to chromosome 18 at map position 39.6 (LOD 4.0) and flanked by SSR markers BNL 1721_178 and BNL 569_131 at positions 27.6 and 42.9, respectively. The two QTLs on chromosome 21 had significant additive and dominance effects, which were about equal for each QTL. The QTL on chromosome 18 showed larger additive than dominance effects. Following the precedent set by the naming of the G. longicalyx Hutchinson & Lee and G. aridum [(Rose & Standley) Skovsted] sources of resistance, we suggest the usage of Ren barb1 and Ren barb2 to designate these QTLs on chromosome 21 and Ren barb3 on chromosome 18.  相似文献   

20.
DNA markers were used to identify quantitative trait loci (QTLs) for plant height, ear height, and three flowering traits in hybrid progeny of two generations (F2:3, F6:8) of lines from a Mo17×H99 maize population. For both generations, testcross (TC) progeny were developed by crossing the lines to three inbred testers (B91, A632, B73). The hybrid progeny from the two generations were evaluated at the same locations but in different years as per an early generation testing program. QTLs were identified within each TC population and for mean testcross (MTC) performance. Overall, more QTLs were detected in the F6:8 than the F2:3 generation. Totalled over all five traits, 41 (B91) to 69% (B73) of the QTLs for tester effects and 67% of the QTLs for MTC detected in the F2:3 generation were verified in the F6:8 generation. Although differences in relative rank of the QTL effects across generations were observed, especially for the flowering traits, parental contributions were nearly always consistent. Several (8–11) QTLs were identified with effects for all three tester populations and for all traits except the anthesis-silk interval, which had only two such regions. Over all five traits, previous evaluations in this population identified 26 QTLs with consistent effects for two (F2:3, F6:8) inbred-progeny evaluations, and 20 (77%) were also associated with MTC in at least one of the generations evaluated herein. In all instances of common inbred and TC QTLs, parental contributions were the same. Received: 26 November 1999 / Accepted: 18 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号