首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed strains that allow a direct selection for mutators of Escherichia coli on a single plate medium. The plate selection is based on using two different markers whose reversion is enhanced by a given mutator. Plates containing limiting amounts of each respective nutrient allow the growth of ghost colonies or microcolonies that give rise to full-size colonies only if a reversion event occurs. Because two successive mutational events are required, mutator cells are favored to generate full-size colonies. Reversion of a third marker allows direct visualization of the mutator phenotype by the large number of blue papillae in the full-size colonies. We also describe plate selections involving three successive nutrient markers followed by a fourth papillation step. Different frameshift or base substitution mutations are used to select for mismatch-repair-defective strains (mutHLS and uvrD). We can detect and monitor mutator cells arising spontaneously, at frequencies lower than 10(-5) in the population. Also, we can measure a mutator cascade, in which one type of mutator (mutT) generates a second mutator (mutHLS) that then allows stepwise frameshift mutations. We discuss the relevance of mutators arising on a single medium as a result of cells overcoming successive growth barriers to the development and progression of cancerous tumors, some of which are mutator cell lines.  相似文献   

2.
Defects in genes that control DNA repair, proliferation, and apoptosis can increase genomic instability, and thus promote malignant progression. Although most tumors that arise in humans with neurofibromatosis type 1 (NF1) are benign, these individuals are at increased risk for malignant peripheral nerve sheath tumors (MPNST). To characterize additional mutations required for the development of MPNST from benign plexiform neurofibromas, we generated a mouse model for these tumors by combining targeted null mutations in Nf1 and p53, in cis. CisNf1+/-; p53+/- mice spontaneously develop PNST, and these tumors exhibit loss-of-heterozygosity at both the Nf1 and p53 loci. Because p53 has well-characterized roles in the DNA damage response, DNA repair, and apoptosis, and because DNA repair genes have been proposed to act as modifiers in NF1, we used the cisNf1+/-; p53+/- mice to determine whether a mutator phenotype arises in NF1-associated malignancies. To quantitate spontaneous mutant frequencies (MF), we crossed the Big Blue mouse, which harbors a lacI transgene, to the cisNf1+/-; p53+/- mice, and isolated genomic DNA from both tumor and normal tissues in compound heterozygotes and wild-type siblings. Many of the PNST exhibited increased mutant frequencies (MF=4.70) when compared to normal peripheral nerve and brain (MF=2.09); mutations occurred throughout the entire lacI gene, and included base substitutions, insertions, and deletions. Moreover, the brains, spleens, and livers of these cisNf1+/-; p53+/- animals exhibited increased mutant frequencies when compared to tissues from wild-type littermates. We conclude that a mild mutator phenotype arises in the tumors and tissues of cisNf1+/-; p53+/- mice, and propose that genomic instability influences NF1 tumor progression and disease severity.  相似文献   

3.
Tanaka MM  Bergstrom CT  Levin BR 《Genetics》2003,164(3):843-854
Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates.  相似文献   

4.
Defects in the methyl-directed mismatch repair lead to both the hypermutability phenotype and removal of a barrier to genetic exchange between species. Mutator bacteria carrying such defects occur frequently among bacterial pathogens, suggesting that subpopulations of mutators are contained within pathogen clones and give rise to the genetic variants that are acted upon by selective forces to allow survival or successful infection. We report here on the detection of the mutator subpopulation in Salmonella typhimurium and determination of its frequency in laboratory cultures. The analysis involved screening for mutators among revertants of S. typhimurium histidine auxotrophs selected for the His+ phenotype, since the frequency of mutators is expected to be increased in the selected mutant population they helped to spawn. The increases in spontaneous reversion of histidine mutations were first measured in isogenic strains carrying mismatch repair-defective mutH, mutL, mutS, or uvrD alleles, relative to their mismatch repair-proficient counterparts. Screening for the mutator phenotype in nearly 12,000 revertants of repair-proficient strains carrying his mutations highly stimulated for reversion in mutator backgrounds, the base substitution in hisG428 and frameshift in hisC3076, yielded five mutator strains (0.04%). the his+ reversion mutations contained within the newly-arisen mutator strains were characteristic of the predominant nucleotide changes expected in such mutators, as assessed by comparison with the spectra for reversion events in wild-type and mismatch correction-defective backgrounds. The results show that subpopulations of mutators, residing in normal populations at a finite frequency, can be culled from the culture by strong selection for a required phenotype. We calculate that the frequency of mutators in the unselected population of S. typhimurium is 1–4×10−6, an incidence of 10-fold lower than that expected based on studies of laboratory cultures of Escherichia coli.  相似文献   

5.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   

6.
Many models of carcinogenesis posit that multiple genetic events are required for a normal cell to become cancerous. As the mutation rate of a single gene is in the range of 10(-8) to 10(-5) per cell division, a central question remains, how does a single cell acquire multiple mutations? One hypothesis, originally articulated by Loeb [10], proposed that some mutations may not be isolated events, but are associated with a mutator phenotype that leads to the occurrence of additional mutations elsewhere in the cellular genome. To test this hypothesis, we utilized a human lymphoblastoid cell line (WTK1) that is known to be hypermutable at the autosomal thymidine kinase (TK) locus. We isolated 139 independent clones which were selected for new TK mutations that arose either spontaneously or as the result of a single X-ray exposure of 1.5Gy. These clones were examined for second-site alterations in several microsatellite loci scattered throughout the genome using polymerase chain reaction (PCR) amplification followed by both denaturing gel electrophoresis and single-stranded conformational polymorphism (SSCP) analysis. Of these clones, 21 exhibited second-site mutations primarily involving loss of heterozygosity, 17 arose from irradiated cells whereas the remaining four arose from non-irradiated cells. We further examined the 17 clones which exhibited alterations specifically at the D16S265 locus; alterations at this site were associated with an enhanced frequency of mutations at other loci in the same region of chromosome 16q, but were not associated with additional mutations at other sites in the genome. Furthermore, new mutations arose in loci on 16q when these clones were propagated for 6 months in culture. Overall, these results support the hypothesis that radiation can induce a type of genetic instability which may facilitate the occurrence of multiple mutations throughout the genome in a small population of exposed cells. Furthermore, some cells may possess localized regions in the genome which are highly sensitive to the induction of instability.  相似文献   

7.
Colonies of Bacillus anthracis Sterne allow the growth of papillation after 6 days of incubation at 30°C on Luria–Bertani medium. The papillae are due to mutations that allow the cells to overcome the barriers to continued growth. Cells isolated from papillae display two distinct gross phenotypes (group A and group B). We determined that group A mutants have mutations in the nprR gene including frameshifts, deletions, duplications and base substitutions. We used papillation as a tool for finding new mutators as the mutators generate elevated levels of papillation. We discovered that disruption of yycJ or recJ leads to a spontaneous mutator phenotype. We defined the nprR/papillation system as a new mutational analysis system for B. anthracis. The mutational specificity of the new mutator yycJ is similar to that of mismatch repair‐deficient strains (MMR) such as those with mutations in mutL or mutS. Deficiency in recJ results in a unique specificity, generating only tandem duplications.  相似文献   

8.
Laboratory mutator strain of Drosophila melanogaster is characterized by increased (up to 10(-3)-10(-4) frequency of spontaneous mutability. Mutations appear in premeiotic stages of gametes development. The majority of mutations were unstable (high frequencies of reversions, appearance of new mutations at the same and other loci, replicating instability). Localization of mobile elements mdg1, mdg2, mdg3, mdg4, copia and P element in X chromosomes of mutator individuals and its mutations y, ct, sbt was studied by hybridization in situ. In all strains P element was absent. The distribution of mdg1, mdg2, mdg3 and copia was identical in mutator strains and its derivatives, but distribution of mdg4 was different. The essential heterogeneity in localization of mdg4 and increased (up to 30-40) copy number in the mutator strain individuals was observed. The ability of single element mdg4 to autonomous transpositions was thus shown.  相似文献   

9.
Spontaneous Unstable UNC-22 IV Mutations in C. ELEGANS Var. Bergerac   总被引:21,自引:2,他引:19  
This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 x 10-4 , and most of these spontaneous unc-22 mutations revert at frequencies between 2 x 10-3 and 2 x 10 -4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable.

The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.

  相似文献   

10.
A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. The mutator females had been previously shown by Gold and Green to manifest a higher level of radiation-induced mutability (as measured by the X-ray-induction of sex-linked recessive lethals) in their pre-meiotic germ cells compared to normal females at an exposure of 100 R. In the presence work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The result show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.  相似文献   

11.
12.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

13.
There is increasing evidence that most human cancers contain multiple mutations. By the time a tumor is clinically detectable it may have accumulated tens of thousands of mutations. In normal cells, mutations are rare events occurring at a rate of 10(-10) mutations per nucleotide per cell per generation. We have argued that the mutation rates exhibited by normal human cells are insufficient to account for the large number of mutations found in human cancers, and therefore, that an early event in tumorigenesis is the development of a mutator phenotype. In normal cells, spontaneous and induced DNA damage is balanced by multiple pathways for DNA repair, and most DNA damage is repaired without error. However, in tumor cells this balance may be shifted such that damage overwhelms the repair capacity, resulting in the accumulation of multiple mutations. Our hypothesis is that multiple random mutations occur during carcinogenesis. The sequential mutations that are observed in some human tumors result from selective events required for tumor progression. We consider the possibility that endogenous sources of DNA damage, in particular oxidative DNA damage, may contribute to genomic instability and to a mutator phenotype in some tumors. Endogenous and environmental sources of reactive oxygen species (ROS) are abundant. In tumor cells, antioxidant or DNA repair capacity may be insufficient to compensate for the production of ROS, and these endogenous ROS may be capable of damaging DNA and inducing mutations in critical DNA stability genes. The possibility that oxidative DNA damage could be a significant source of the genomic instability characteristic of human cancers is exciting, because it may be feasible to modulate the extent of oxidative damage through antioxidant therapy. The use of antioxidants to reduce the extent of molecular damage by ROS could delay the progression of cancer.  相似文献   

14.
We examined rates of DNA sequence evolution in 12 populations of Escherichia coli propagated in a glucose minimal medium for 20,000 generations. Previous work saw mutations mediated by mobile elements in these populations, but the extent of other genomic changes was not investigated. Four of the populations evolved defects in DNA repair and became mutators. Some 500 bp was sequenced in each of 36 genes for 50 clones, including 2 ancestral variants, 2 clones from each population at generation 10,000, and 2 from each at generation 20,000. Ten mutations were found in total, all point mutations including mostly synonymous substitutions and nonsynonymous polymorphisms; all 10 were found in mutator populations. We compared the observed sequence evolution to predictions based on different scenarios. The number of synonymous substitutions is lower than predicted from measured mutation rates in E. coli, but the number is higher than rates based on comparing E. coli and Salmonella genomes. Extrapolating to the entire genome, these data predict about 250 synonymous substitutions on average per mutator population, but only about 3 synonymous substitutions per nonmutator population, during 20,000 generations. These data illustrate the challenge of finding sequence variation among bacterial isolates that share such a recent ancestor. However, this limited variation also provides a useful baseline for research aimed at finding the beneficial substitutions in these populations.  相似文献   

15.
Gene targeting in Arabidopsis   总被引:3,自引:0,他引:3  
Precise modification by gene targeting (GT) provides an important tool for studies of gene function in vivo. Although routine with many organisms, only isolated examples of GT events have been reported for flowering plants. These were at low frequencies precluding reliable estimation of targeting efficiency and evaluation of GT mechanisms. Here we present an unambiguous and straightforward system for detection of GT events in Arabidopsis using an endogenous nuclear gene encoding protoporphyrinogen oxidase (PPO), involved in chlorophyll and heme syntheses. Inhibition of PPO by the herbicide Butafenacil results in rapid plant death. However, the combination of two particular mutations renders PPO highly resistant to Butafenacil. We exploited this feature for selection of GT events by introducing the mutations into the PPO gene by homologous recombination. We have estimated the basal GT frequency to be 2.4 x 10(-3). Approximately one-third of events were true GT (TGT) leading to the anticipated modification of the chromosomal PPO copy. The remaining events could be classified as ectopic GT (EGT) arising by modification of vector DNA by the chromosomal template and its random integration into the Arabidopsis genome. Thus the TGT frequency in our experimental setup is 0.72 x 10(-3). In view of the high efficiency of Arabidopsis transformation, GT experiments of a reasonable size followed by a PCR screen for GT events should also allow for modification of non-selectable targets. Moreover, the system presented here should contribute significantly to future improvement of GT technology in plants.  相似文献   

16.
Chronic oxidative stress has been associated with genomic instability following exposure to ionizing radiation. However, results showing direct causal linkages between specific ROS (reactive oxygen species) and the ionizing radiation-induced mutator phenotype are lacking. The present study demonstrates that ionizing radiation-induced genomically unstable cells (characterized by chromosomal instability and an increase in mutation and gene amplification frequencies) show a 3-fold increase in steady-state levels of hydrogen peroxide, but not superoxide. Furthermore, stable clones isolated from parallel studies showed significant increases in catalase and GPx (glutathione peroxidase) activity. Treatment of unstable cells with PEG-CAT (polyethylene glycol-conjugated catalase) reduced the mutation frequency and mutation rate in a dose-dependent fashion. In addition, inhibiting catalase activity in the stable clones using AT (3-aminotriazole) increased mutation frequency and rate. These results clearly demonstrate the causal relationship between chronic oxidative stress mediated by hydrogen peroxide and the mutator phenotype that persists for many generations following exposure of mammalian cells to ionizing radiation.  相似文献   

17.
A minor fraction of simian immunodeficiency virus (SIV)-infected macaques progress rapidly to AIDS in the absence of SIV-specific immune responses. Common mutations in conserved residues of env in three SIVsmE543-3-infected rapid-progressor (RP) macaques suggest the evolution of a common viral variant in RP macaques. The goal of the present study was to analyze the biological properties of these variants in vitro and in vivo through the derivation of infectious molecular clones. Virus isolated from a SIVsmE543-3-infected RP macaque, H445 was used to inoculate six naive rhesus macaques. Although RP-specific mutations dominated in H445 tissues, they represented only 10% of the population of the virus stock, suggesting a selective disadvantage in vitro. Only one of these macaques (H635) progressed rapidly to AIDS. Plasma virus during primary infection of H635 was similar to the inoculum. However, RP-specific mutations were apparently rapidly reselected by 4 to 9 weeks postinfection. Terminal plasma from H635 was used as a source of viral RNA to generate seven full-length, infectious molecular clones. With the exception of one clone, which was similar to SIVsmE543-3, clones with RP-specific mutations replicated with delayed kinetics in rhesus peripheral blood mononuclear cells and human T-cell lines. None of the clones replicated in monocyte-derived or alveolar macrophages, and all used CCR5 as their major coreceptor. RP variants appear to be well adapted to replicate in vivo in RP macaques but are at a disadvantage in tissue culture compared to their parent, SIVsmE543-3. Therefore, tissue culture may not provide a good surrogate for replication of RP variants in macaques. These infectious clones will provide a valuable reagent to study the roles of specific viral variants in rapid progression in vivo.  相似文献   

18.
Feng  Xikang  Chen  Lingxi  Qing  Yuhao  Li  Ruikang  Li  Chaohui  Li  Shuai Cheng 《BMC genomics》2021,22(5):1-13
Background

All diseases containing genetic material undergo genetic evolution and give rise to heterogeneity including cancer and infection. Although these illnesses are biologically very different, the ability for phylogenetic retrodiction based on the genomic reads is common between them and thus tree-based principles and assumptions are shared. Just as the different frequencies of tumor genomic variants presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that the different variant frequencies in viral reads offers the means to infer multiple co-infecting sublineages.

Results

We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios.To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries.

Conclusions

Concerti successfully extracts and integrates information from multi-point samples, enabling the discovery of clinically plausible phylogenetic trees that capture the heterogeneity known to exist both spatially and temporally. These models can have direct therapeutic implications by highlighting “birth” of clones that may harbor resistance mechanisms to treatment, “death” of subclones with drug targets, and acquisition of functionally pertinent mutations in clones that may have seemed clinically irrelevant. Specifically in this paper we uncover new potential parallel mutations in the evolution of the SARS-CoV-2 virus. In the context of cancer, we identify new clones harboring resistant mutations to therapy.

  相似文献   

19.
Several studies have revealed that the Helicobacter pylori genome differs markedly from strain to strain, perhaps as a result of mutations arising during persistent infection and/or related to the observed variation in virulence. The development of a detection system for mutations in H. pylori genes might therefore help us to develop a better understanding of its mutability, and in this way help us to develop plans for investigating the relationship between its genomic variability and the pathogenesis of various gastric and duodenal diseases associated with the long-term H. pylori infections. We have therefore begun a study of H. pylori mutability using the endogenous rpsL gene as a marker. Spontaneous mutant frequencies were measured and compared among H. pylori strains, after incubation on plates containing 50 microg/ml of streptomycin for 10 days as a selection procedure. The rpsL gene of each streptomycin-resistant (Str(r)) mutant was amplified by polymerase-chain-reaction (PCR) and sequenced. All of the mutations we characterized were localized at codons 43 or 88 of the rpsL gene and were base transitions from A to G, replacing lysine with arginine. This is in contrast to the spontaneous Str(r) mutants isolated from Escherichia coli, which resulted from either A to G transitions at lysine codons 42 and 87, or A to T or C transversions at lysine codon 42. The spontaneous mutant frequencies of the rpsL gene in H. pylori were of the order of 10(-9), and there were significant differences in spontaneous mutant frequencies among the strains tested. This mutation detection system might be of value in screening clinical isolates for H. pylori mutator phenotypes.  相似文献   

20.
Beckman RA  Loeb LA 《Genetics》2005,171(4):2123-2131
Development of cancer requires the acquisition of multiple oncogenic mutations and selection of the malignant clone. Cancer evolves within a finite host lifetime and mechanisms of carcinogenesis that accelerate this process may be more likely to contribute to the development of clinical cancers. Mutator mutations are mutations that affect genome stability and accelerate the acquisition of oncogenic mutations. However, mutator mutations will also accelerate the accumulation of mutations that decrease cell proliferation, increase apoptosis, or affect other key fitness parameters. These "reduced-fitness" mutations may mediate "negative clonal selection," i.e., selective elimination of premalignant mutator clones. Target reduced-fitness loci may be "recessive" (both copies must be mutated to reduce fitness) or "dominant" (single-copy mutation reduces fitness). A direct mathematical analysis is applied to negative clonal selection, leading to the conclusion that negative clonal selection against mutator clones is unlikely to be a significant effect under realistic conditions. In addition, the relative importance of dominant and recessive reduced-fitness mutations is quantitatively defined. The relative predominance of mutator mutations in clinical cancers will depend on several variables, including the tolerance of the genome for reduced-fitness mutations, particularly the number and potency of dominant reduced-fitness loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号