首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinity tolerance of diapausing eggs of freshwater zooplankton   总被引:3,自引:0,他引:3  
1. Many freshwater zooplankton produce diapausing eggs capable of withstanding periods of adverse environmental conditions, such as anoxia, drought and extreme temperature. These eggs may also allow oligostenohaline species to survive increased salinity during periods of tidal flux or evaporation, and here we test the ability of diapause eggs to withstand such conditions. 2. Salinity tolerance may also enable organisms to invade new environments. The increased rate of introduction of non‐indigenous species to the Laurentian Great Lakes since 1989, when ballast water exchange regulations (to replace fresh/brackish water at sea with full seawater) were first implemented for transoceanic vessels, has stimulated studies that explore mechanisms of introduction, other than of active animals, in ballast water. One hypothesis proposes that freshwater organisms transported in ballast tanks as diapausing eggs may be partially responsible for the increased rate of species introduction, as these eggs may tolerate a wide array of adverse environmental conditions, including exposure to saline water. 3. We collected ballast sediments from transoceanic vessels entering the Great Lakes, isolated diapausing eggs of three species (Bosmina liederi, Daphnia longiremis and Brachionus calyciflorus), and measured the effect of salinity on hatching rate. In general, exposure to salinity significantly reduced the hatching rate of diapausing eggs. However, as non‐indigenous species can establish from a small founding population, it is unclear whether salinity exposure will be effective as a management tool.  相似文献   

2.
Ships that enter the Great Lakes laden with cargo carry only residual ballast water and sediment in ballast tanks. These ships are designated ‘no ballast on board’ (NOBOB) and constitute > 90% of inbound traffic. We conducted in situ experiments using emergence traps to assess the viability and the introduction potential of invertebrate diapausing stages present in ships’ ballast sediment. All trials commenced while vessels operated on the lower lakes (Erie, Ontario) and were completed 6–11 days later at ports on the upper lakes (Michigan, Lake Superior). Eight trials were conducted on four ships using five different ballast sediments. Hatching was observed on every ship, although not from all sediments on all ships. Overall hatch rates were very low (0.5 individuals per 500 g sediment), typically involving activation of < 0.05% of total eggs present. Five species of rotifers and copepod nauplii were hatched from ballast sediments, although only one or two species typically hatched from any one sediment. Results of this study indicate that hatching of diapausing eggs contained in ballast sediment of NOBOB ships poses a relatively low risk of invasion to the Great Lakes. However, as reproduction may occur in tanks, and non‐indigenous species may be involved in numerous introduction events, the risk posed by this vector is small but potentially important. While dormancy is a characteristic enabling enhanced survival during transportation in ballast tanks, it becomes a hindrance for introduction.  相似文献   

3.
The Laurentian Great Lakes basin has been invaded by at least 182 non-indigenous species. A new invader is discovered every 28 weeks, which is the highest rate recorded for a freshwater ecosystem. Over the past century, invasions have occurred in phases linked to changes in the dominant vectors. The number of ship-vectored invaders recorded per decade is correlated with the intensity of vessel traffic within the basin. Ballast water release from ocean vessels is the putative vector for 65% of all invasions recorded since the opening of the St. Lawrence Seaway in 1959. As a preventive measure, ocean vessels have been required since 1993 to exchange their freshwater or estuarine ballast with highly saline ocean water prior to entering the Great Lakes. However, this procedure has not prevented ship-vectored species introductions. Most ships visiting the Great Lakes declare 'no ballast on board' (NOBOB) and are exempt from the regulation, even though they carry residual water that is discharged into the Great Lakes during their activities of off-loading inbound cargo and loading outbound cargo. Recently introduced species consist predominantly of benthic invertebrates with broad salinity tolerance. Such species are most likely to survive in a ballast tank following ballast water exchange, as well as transport in the residual water and tank sediments of NOBOB ships. Thus, the Great Lakes remain at risk of being invaded by dozens of euryhaline invertebrates that have spread into Eurasian ports from whence originates the bulk of foreign ships visiting the basin.  相似文献   

4.
Historically management of human use of ecosystems has been based around engineering and chemical approaches and through the construction of treatment facilities, effluent controls and setting chemical concentrations, both at end of pipe and in the aquatic environment. However, the general continued degradation of many ecosystems shows these approaches alone are insufficient. In the Laurentian Great Lakes the Great Lakes Water Quality Agreement was first signed in 1972 and ratified in 1978 and in 1987 tacitly acknowledged the problems with a chemical only approach by requiring the development of ecosystem objectives in the 1978 agreement. Furthermore, the agreement specifically identified numerical ecosystem objectives in the 1987 agreement. The evolution of ecosystem objectives in the Great Lakes has expanded from the strictly numerical objectives such as production of lake trout and abundance of the amphipod Pontoporeia hoyi. More recent developments in ecosystem objectives have been the inclusion of indicators for wildlife, habitat, human health and stewardship.Prepared as a discussion paper presented to the United Nations Economic Commission for Europe's seminar on an Ecosystems Approach to Water Management (May 27–31, 1991).  相似文献   

5.
Aim  Hull fouling is a leading vector for the introduction of marine, non‐indigenous species (NIS) worldwide, yet its importance to freshwater habitats is poorly understood. We aimed to establish the complement of NIS transported via this vector to the Great Lakes and to determine if they pose an invasion risk. Location  Laurentian Great Lakes. Methods  During 2007 and 2008, we collected scrapings from exterior surfaces as well as underwater video‐transects from 20 vessels shortly after their arrival in Great Lakes’ ports. Invertebrates present were sorted and identified in the laboratory. Results  Total estimated abundance averaged > 170,000 invertebrates per ship belonging to 109 taxa. Most (72%) of these taxa were freshwater species already present in the Great Lakes, whereas 11 and 31% were native to estuarine and marine habitats respectively, and would not be expected to survive in this habitat. Abundance was dominated by barnacles (51%), cladocerans (19%), bivalves (12%) and amphipods (11%). Sea‐chest grating and the rudder were hot‐spots for biofouling. Invertebrate diversity and total abundance were positively associated with total time spent in port during the last year and time in Pacific South American ports and negatively related to time in high latitudes and sailing speed. Although we found some live, established invaders such as Gammarus tigrinus and Dreissena rostriformis bugensis, only one individual of a freshwater NIS (Alexandrovia onegensis, Oligochaeta) not yet reported in the Great Lakes was detected. The animal’s poor condition and seemingly low population abundance indicated the risk of live introduction by this vector was likely quite low. Main conclusion  Our results indicate that hull fouling appears to pose a low risk of introductions of new species capable of surviving in the Great Lakes, unlike foreign‐sourced freshwater ballast water that historically was discharged by these transoceanic vessels.  相似文献   

6.
1. Mid‐ocean exchange and saltwater flushing were implemented as management practices to reduce the likelihood of new biological invasions in the Laurentian Great Lakes associated with ships’ ballast water and sediments. Despite this, there has been no formal assessment of the efficacy of these procedures. Here, we conduct a comparative analysis of community composition of dormant taxa transported by ballast sediment before and after regulations came into effect in 2006. 2. Ballast sediment samples were collected from 17 ships during the post‐regulation interval of 2007 and 2008. Invertebrate eggs were counted, hatched and species identified in the laboratory. Results were compared to similar samples collected from 39 ships between 2000 and 2002, prior to implementation of saltwater flushing regulations. 3. The estimated amount of residual ballast sediment transported by vessels was significantly lower during the post‐regulation period, ranging from <1 to 45 tonnes per ship, with an average of 5 tonnes. Mean density and number of dormant viable eggs per ship declined 91 and 81%, respectively. 4. Community composition also changed through time, with Rotifera accounting for 78% of taxa transported prior to regulation, whereas Cladocera and Copepoda each accounted for 38% of abundance post‐regulation. Although the number of non‐indigenous species (NIS) declined 73% per ship after 2006, the reduction was not statistically significant; however, the number of freshwater NIS – which pose the greatest risk of invasion for the Great Lakes – was significantly lowered. 5. Our comparative analysis suggests that ballast management regulations enacted in 2006 markedly reduced the probability of introduction of NIS via dormant eggs carried in ballast sediments.  相似文献   

7.
The Canada — U.S. Great Lakes Water Quality Agreement defines Areas of Concern as geographic areas that fail to meet the general or specific objectives of the Great Lakes Water Quality Agreement where such failure has caused or is likely to cause impairment of beneficial use or the area's ability to support aquatic life. Impairment of beneficial use is defined by the Agreement as a change in the physical, chemical or biological integrity sufficient to cause any one of 14 designated use impairments. In 1987 the International Joint Commission's Great Lakes Water Quality Board (GLWQB) recommended that criteria be developed to determine when ecosystem conditions have been impacted enough to warrant designation as an Area of Concern and when conditions have improved sufficiently to be delisted. Based on scientific input and policy considerations, the GLWQB adopted, in principle, a set of quantitative and qualitative listing/delisting criteria for each of the 14 use impairments. These criteria can be uniformly applied throughout the basin. Further, the GLWQB recommended future refinement of these criteria based on advances in science and public input.  相似文献   

8.
9.
This study determined total number, biomass, taxa, and seasonal occurrence of adult aquatic insects emerging from four vegetation zones in one diked and one undiked freshwater coastal marsh on hypereutrophic lower Green Bay, Lake Michigan, USA during the summer of 1984. Floating box traps were placed in open water, sparse emergent, dense emergent, and wet meadow vegetation zones in each marsh. Insects were collected during 20 24-hour periods, each four days apart, from June 11 to August 26. Two-way ANOVA was used to test differences in number and biomass of insects between marshes and among vegetation zones. Polynomial regression was used to evaluate seasonal emergence patterns. More insects, insect biomass, and insect taxa were found in the diked marsh, especially during the first half of the sampling period. Damselflies were much more abundant in the diked marsh. Most insects and insect biomass were found in the sparse emergent vegetation zone of both marshes. The emerging insect community in the diked marsh appears enhanced by its separation from the hypereutrophic and turbid waters of lower Green Bay.  相似文献   

10.
Robbins  J. A. 《Hydrobiologia》1982,91(1):611-622
Recent sediments of the North American Great Lakes are inhabited by numerous species of macrobenthos which alter the physical and chemical properties of sediments and modify interface transport characteristics. Distributions of such radionuclides as cesium-137, lead-210, and isotopes of plutonium exhibit a zone of constant activity extending down from the sediment-water interface from 1 to 15 cm. Recent studies have confirmed that radiometrically determined mixed depths are consistent with the vertical distribution of oligochaete worms and the amphipod,Pontoporeia hoyi. Generally, 90% of the benthos are contained within the radiometrically defined mixed zone. Where comparisons are possible, rates of sediment reworking by ‘conveyor belt’ species are comparable to or exceed sedimentation rates. Systematic variations in the mixed depth occur within depositional basins with greatest depths tending to be associated with least consolidated, organically rich materials. A quantitative steady-state mixing model accounts satisfactorily for observed radioactivity and heavy metal profiles. Bioturbation appears to be an important process, limiting the resolution with which historical records of particle-associated contaminants may be reconstructed from sediment cores. As bioturbation serves to maintain contact of contaminated sediments with overlying water, this time may also characterize the long-term lake recovery for contaminants removed by burial. As the time varies with location, a mean for an entire lake is not well known, but is on the order of 20 years for Lake Huron. Contribution No. 300 of the Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan.  相似文献   

11.
A bioenergy production and delivery system built around the Great Lakes St. Lawrence Seaway (GLSLS) transportation corridor was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of the GLSLS and associated railway lines was estimated to be capable of producing at least 30 Mt(dry) yr−1 of lignocellulosic biomass with minimal adverse impacts on food and fibre production. This was estimated to be sufficient to displace all of the coal-fired electricity in Ontario plus more than 620 million L of green diesel (equivalent to 5.3% of diesel consumption in GLSLS provinces). Lifecycle greenhouse gas emissions were 88% and 76% lower than coal-fired power and conventional diesel, respectively. Production costs of $120 MWh−1 for power and up to $30 GJ−1 ($1.1 L−1) for green diesel were higher than current market prices, but a value for low-carbon energy would narrow the price differential.  相似文献   

12.
Filtration of ballast water was investigated as a means of minimizing the introduction of nonindigenous zooplankton and phytoplankton by ships visiting the North American Great Lakes-St. Lawrence Seaway system (GLSLSS). An automatic backwash screen filtration (ABSF) system with nominal filtration options of 25, 50 or 100 μm was mounted on the deck of an operating Seaway-sized dry bulk carrier, the MV Algonorth. Water was pumped through the ABSF with a deck mounted pump at 341 m3 hr−1 during routine ship operations in the GLSLSS, and effectiveness of the various screen pore sizes at removing taxonomic categories of zooplankton and phytoplankton was measured using matched treatment and control ballast tanks. The smallest pore sizes (25 and 50 μm) performed better than the 100 μm pore size at removing biological material. There was no difference in the filtration efficiency of the 25 and 50 μm screens relative to macro- or microzooplankton in these tests, but this result was probably due to low densities of macrozooplankton, and soft-bodied (aloricate) characteristics of the microzooplankton present. The 25 and 50 μm pore sizes were subjected to more controlled tests on board a stationary barge platform equipped with triplicate 700 L catchment bins moored in Duluth Harbor of Lake Superior. In these tests, filter pore size, organism size and rigidity influenced zooplankton removal efficiency by the ABSF. The 25 μm screen reduced both macrozooplankton and microzooplankton significantly more than the 50 μm screen. Zooplankton width was more determinative of filtration performance than length, and both filters removed loricate species of rotifers significantly more efficiently than aloricate species of the same length and width size classes. The 25 and 50 μm ABSF also significantly reduced algal densities, with the exception of colonial and filamentous green algae (50 μm only). Filter efficiency relative to algal particles was influenced by filter pore size, organism morphology and structure, and intake density, while algal particle size was not determinative. This research provides compelling evidence that 25 or 50 μm filtration is a potentially powerful means of reducing densities of organisms discharged by ships operating in the Great Lakes but an additional treatment step would be necessary to effectively minimize risk and meet the International Maritime Organization's discharge standards associated with organisms of all sizes in the water column.  相似文献   

13.
Abstract. Pollen records from the western Great Lakes region of North America show substantial increases in birch pollen percentages during the late Holocene. The vegetational and population dynamics underlying the birch increase have received little attention, in part because of the inability to discriminate among species of birch based on pollen morphology. We used analyses of pollen and plant macrofossils from four lakes in the Upper Peninsula of Michigan to document that the birch pollen increase represents a regional expansion of yellow birch ( Betula alleghaniensis ) populations, which was initiated c . 4500 years ago. Whether yellow birch invaded the region at this time or simply expanded from small, previously established populations is not clear, although it probably did not grow near our study sites before the expansion. The initial expansion occurred during an independently documented period of high moisture and high water levels in Lake Michigan. A subsequent expansion in yellow birch abundance and distribution occurred c . 3000 years ago, coinciding with a second period of increased moisture and high lake-levels. The yellow birch expansion may have been modulated by millennial-scale climate variability, with most rapid expansion occurring during relatively wet periods.  相似文献   

14.
The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring ofthe post-eradication ecosystem is crucial to assess success and prevent reinvasion.  相似文献   

15.
This article emphasizes not only an important environmental issue for the Great Lakes but also the importance of decision-making skills in scientific thinking. The activity allows students to acquaint themselves with current Great Lakes topics while simultaneously partaking in decision-making processes that could affect them. As students work through the outlined steps of making a decision, they also participate in cooperative learning, scientific reasoning, and interdisciplinary processing. Students are presented with six ballast water treatment methods that they must evaluate on the basis of provided criteria. They assess the treatments using the decision-making skills of rating, weighing, and discussing.  相似文献   

16.
Pisidium moitessierianum Paladilhe, 1866, a small pea clam native to Europe, was identified for the first time from the lower Great Lakes basin based on an examination of historical collections of Pisidium performed by V. Sterki in 1894 and 1903 and new material collected during 1997 and 1998. During recent surveys, P. moitessierianum individuals were found in the St. Clair River delta, Lake St. Clair and western Lake Erie, but were not detected in the Detroit River or western Lake Ontario. Pisidium moitessierianum was collected on sand, silty sand and mud substrata from water depths ranging between 0.6 and 5.4 m. Populations occurred at an average density of 51 ind. m–2 and included juveniles and adults. All individuals were less than 2.0 mm in length. We examined the structure of the umbos and hinge, surface sculpture and shape of the shell, and the anatomy of gills, mantle and nephridia in populations from the lower Great Lakes and Ukrainian inland basins (Dnieper River and Lake Beloye). The results indicated that the Great Lakes' pea clams match European specimens of P. moitessierianum in these conchological and anatomical characteristics. As with other nonindigenous sphaeriids in the Great Lakes, P. moitessierianum was likely introduced through shipping activities into the Great Lakes, possibly as early as the 1890s.  相似文献   

17.
Biogenic silica concentration (BSi) in sediment cores from the Great Lakes is evaluated as an estimate of siliceous microfossil abundance. A significant linear relationship was found between measured BSi and diatom valve abundance for sediment cores from the Bay of Quinte, Lake Ontario, Lake Erie, Lake Michigan and Lake Superior and between measured BSi and diatom biovolume for Lake Erie, Lake Michigan, and Lake Superior but not for Lake Ontario. Diatom silica predicted from diatom species abundance and an estimated silica content per cell in the Lake Erie cores accounted for 117% and 103% of measured BSi, respectively. By contrast, predicted diatom silica could only account for 28% of measured BSi in the Lake Michigan core and only 25% in the Lake Superior core. A few large diatoms with a large silica content per cell comprised a major portion of predicted diatom silica in all cores. The discrepancy between chemically measured BSi and the silica predicted from diatoms in the Lake Michigan and Lake Superior cores was partially due to the inability of the regression model, used to estimate diatom silica content, to account for different degrees of silicification in the diatom asemblages from the more dissolved silica rich Lake Michigan and Lake Superior.  相似文献   

18.
19.
The Great Lakes ecosystem is home to at least 139 non-indigenous species of fauna and flora which have become established following invasions or intentional introductions. About ten percent of the exotic species have caused economic or ecological damage to the system. A sample of this group is reviewed to determine if ecological concepts are useful in helping to predict colonization and impacts to ecosystem health. Successful colonization by most of the species reviewed was predictable from habitat requirements and behaviour. Ecosystem disturbance was a factor in the success of some of the colonists but was not an overriding ecological requirement. Perturbations to ecosystem health are more difficult to predict and in most cases were not readily apparent from knowledge about the ecology of invaders or native communities. The main damage to ecosystem health by the species reviewed resulted from competition, predation and habitat modification. Difficulties in predicting both invasions and damage from successful colonists point to the need to prevent non-indigenous species from reaching the Great Lakes basin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号