首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of lipid transfers on the structure and composition of high density lipoproteins (HDL) has been studied in vitro in incubations that contained the lipoprotein-free fraction of human plasma as a source of lipid transfer protein. These incubations did not contain lecithin:cholesterol acyltransferase activity and were not supplemented with lipoprotein lipase. Incubations were performed at 37 degrees C for 6 hr in both the presence and absence of either added very low density lipoproteins (VLDL) or the artificial triglyceride emulsion, Intralipid. Incubation in the absence of added VLDL or Intralipid had little or no effect on the HDL. By contrast, incubation in the presence of either VLDL or Intralipid resulted in marked changes in the HDL. The effect of incubation with VLDL was qualitatively similar to that of Intralipid; both resulted in obvious transfers of lipid and changes in the density, particle size, and composition of HDL. Incubation of the plasma fraction of density 1.006-1.21 g/ml, total HDL, or HDL3 with either VLDL or Intralipid resulted in the following: 1) a depletion of the cholesteryl ester and free cholesterol content and an increase in the triglyceride content of both HDL2 and HDL3; 2) a decrease in density and an increase in particle size of the HDL3 to form a population of HDL2-like particles; and 3) the formation of a discrete population of very small lipoproteins with a density greater than that of the parent HDL3. The newly formed lipoproteins had a mean particle radius of 3.7-3.8 nm and consisted mainly of protein, predominantly apolipoprotein A-I and phospholipid.  相似文献   

2.
Lipid transfer between human plasma low-density lipoprotein (LDL) and an LDL-size microemulsion of triolein and phosphatidylcholine stabilized with human apolipoprotein A-I was catalyzed by the lipid transfer particle from hemolymph of the tobacco hornworm (Manduca sexta). Net transfer of phospholipid and triacylglycerol from the emulsion to LDL was observed and the apparent initial rates of transfer were dependent on the amount of catalyst. Net transfer of phospholipid mass was twice as much as that of triacylglycerol with respect to both the initial rate and the final equilibrium state. The final amount of net transfer of both lipids was dependent upon the initial ratio of LDL: microemulsion present in the incubation mixture up to 1:1 on the basis of phospholipid. The microemulsion lipid composition was maximally altered from an initial weight ratio of 1.09 +/- 0.08 (phospholipid/triolein) to 0.90 +/- 0.03 by this reaction. Further increase of LDL in the incubation caused neither further net transfer nor further change in the lipid composition of the microemulsion. The catalyst neither affected spontaneous transfer of free cholesterol between the emulsion and LDL nor enhanced cholesteryl ester transfer in this reaction system. As a result of the facilitated reaction, LDL gained a significant amount of phospholipid and triacylglycerol causing up to an 8% increase in core lipids and 14% in phospholipid. Some free cholesterol is recovered in the emulsions via spontaneous exchange. Transfer or exchange of apolipoproteins during the course of facilitated lipid transfer did not occur.  相似文献   

3.
In cynomolgus monkeys (Macaca fascicularis) fed an atherogenic diet, large, cholesterol ester-rich LDL (Mr greater than 3.5.10(6] are found at the same time that the plasma triacylglycerol levels are low. We studied whether the presence of higher concentrations of triacylglycerol-rich lipoproteins (VLDL) during in vitro incubations would allows depletion from LDL of cholesterol ester and a decreased LDL molecular weight. Three high Mr LDL (Mr = (3.7-4.8).10(6)), rich in cholesterol ester (50 +/- 1.4% by weight), were isolated from three animals by zonal ultracentrifugation, and were then incubated with human VLDL at 37 degrees C for 18 h in lipoprotein-deficient human plasma containing neutral lipid transfer activity. After incubation, modified LDL (M-LDL) was isolated by zonal ultracentrifugation. M-LDL was triacylglycerol-rich (36 +/- 5% by weight) and cholesterol ester-poor (20 +/- 3%), and cholesterol ester had transferred into VLDL. Purified lipoprotein lipase was added to the M-LDL, and triacylglycerol was hydrolyzed. The size of the post-lipolysis M-LDL (Mp-LDL) particles became smaller (mean diameters of 253 A and 228 A for two native LDLs and 215 A and 193 A for Mp-LDL, respectively). Both analytical and zonal ultracentrifugation showed Mp-LDL to be more dense than native LDL. Estimated molecular weights for Mp-LDL were 40%-50% less than that of the original LDL, and fell within the molecular weight range for normal human and monkey LDL. Lipid exchanges, but not apoprotein transfers, were responsible for LDL remodelling, as supported by three separate methods of analysis. Cholesterol ester losses accounted for about two-thirds of the molecular weight decrease. These in vitro results suggest that cholesterol ester enrichment of apoprotein B lipoprotein particles can be reversed by providing adequate levels of VLDL in the presence of neutral lipid transfer processes and lipolytic activity.  相似文献   

4.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

5.
There are inverse relationships between HDL cholesterol and plasma triacylglycerol concentrations in normal and in hypertriglyceridemic individuals. To investigate the interactions between triacylglycerol-rich lipid particles and HDL, a lipid emulsion model of the triacylglycerol-rich lipoproteins was prepared. When emulsion particles were incubated with rat high-density lipoproteins (HDL) in the presence of lipid transfer activity (d greater than 1.21 g/ml fractions) from rabbit or human plasma there was a rapid bi-directional exchange of cholesteryl oleate (CO) and phospholipid (PL) labels between lighter and heavier fractions of HDL and emulsion particles. The transfers of CO and PL labels between both light and heavy fractions of HDL and the emulsion particles were increased with increasing amounts of emulsion added to the incubations. Incubation with the d greater than 1.21 g/ml fraction from rat plasma resulted in only a small exchange of CO whereas PL exchange was similar to rabbit and human plasma. Retinyl palmitate label was not transferred from emulsion particles to the HDL fractions even in the presence of lipid transfer activity from rabbit or human plasma. The present study shows that the transfer protein-mediated exchanges of surface and core lipids between HDL and the triacylglycerol-rich lipoproteins are affected by the quantity of triacylglycerol-rich particles in the system. This mechanism may contribute to the inverse relationships between plasma triacylglycerol concentrations and HDL concentrations in normal and hypertriglyceridemic individuals.  相似文献   

6.
Like most commercial parenteral emulsions, Intralipid contains the same amount of phospholipids (12 mg/ml) to stabilize 100 or 200 mg of soybean oil (10 or 20% formula, respectively). By centrifugation, 10 or 20% Intralipid was separated into a supernatant, fat particles containing the bulk of triacylglycerols stabilized by a fraction of phospholipids and an infranatant--called mesophase--consisting mainly of phospholipids used in excess as emulsifier. We observed that the initial triacylglycerol/phospholipid ratio of the emulsion (100/12 and 200/12, respectively) determines the size of the triacylglycerol-rich particles (260 and 350 nm) as well as the phospholipid content of the mesophase (6.02 and 4.67 mg/ml). To understand the mechanism of the lipoprotein-X (LPX) accumulation generally reported after intravenous fat infusions, plasma lipid levels and lipoprotein profiles were first compared in the rats after infusion (at a constant rate of 0.5 or 1 ml/h for 43 h) of Intralipid 10 or 20%. For the same intravenous triacylglycerol load (100 mg/h), rats infused with Intralipid 10% at 1 ml/h displayed higher triacylglycerol levels than rats infused with the 20% emulsion at 0.5 ml/h, suggesting that the size of exogenous fat particles modulated the catabolic rate of their triacylglycerols. The plasma levels of LPX varied according to the infusion rate of phospholipids not associated with triacylglycerol-rich particles of the emulsion. Moreover, an apo E and apo B enrichment of plasma and an elevation of the apo B48/apo B100 ratio was always observed after Intralipid infusions. In order to confirm that phospholipids of the mesophase are the main LPX precursors, lipoprotein profiles were then compared in the rats after intravenous infusion, at a constant rate of 1 ml/h, of either the mesophase or a suspension of triacylglycerol-rich particles isolated from Intralipid 20%. As expected, significant LPX amounts were only detected in rats infused with the pure mesophase of the emulsion. It was concluded that products of the lipolysis of exogenous fat particles play only a minor role in the formation of LPX. In fact these abnormal lipoproteins are generated by phospholipids of the mesophase which, like infused liposomes, actively mobilize endogenous free cholesterol. Consequently, in order to be considered as true chylomicron models for safe fat delivery in parenteral nutrition and in order to prevent some detrimental effects on cholesterol metabolism, commercial emulsions should be cleared of phospholipid excess.  相似文献   

7.
Emulsions with lipid compositions similar to the triacylglycerol-rich lipoproteins were metabolized similarly to natural chylomicrons or very-low-density lipoproteins when injected intravenously in rats. Radioactive labels tracing the emulsion triacylglycerols and cholesteryl esters were both removed rapidly from the blood stream, but the removal rate of triacylglycerols was faster than that of cholesteryl ester. Most of the removed cholesteryl ester label was found in the liver, but only a small fraction of the triacylglycerol label was found in this organ, consistent with hepatic uptake of the remnants of the injected emulsion. Emulsions otherwise identical but excluding unesterified cholesterol were metabolized differently. The plasma removal of triacylglycerols remained fast, but the cholesteryl esters were removed very slowly. Heparin stimulated lipolysis, but failed to increase the rate of removal of cholesteryl esters from emulsions lacking cholesterol. Evidently, emulsions lacking cholesterol were acted on by the enzyme lipoprotein lipase, but the resultant triacylglycerol-depleted remnant particle remained in the plasma instead of being rapidly taken up by the liver. Therefore, the presence of emulsion cholesterol is a critical determinant of early metabolic events, and the findings point to a similar role for cholesterol in the natural triacylglycerol-rich lipoproteins.  相似文献   

8.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

9.
Metabolism of protein-free lipid emulsion models of chylomicrons in rats   总被引:4,自引:0,他引:4  
Emulsions were prepared by ultrasonication of mixtures of triolein, cholesteryl oleate, phosphatidylcholine and cholesterol in aqueous dispersions, then purified by ultracentrifugation. After injection into rats, the metabolism of the artificial, protein-free emulsions was comparable to the metabolism of chylomicrons collected from rat intestinal lymph during the absorption of fat. Like chylomicrons, the emulsion triacylglycerol was removed from the plasma more quickly than emulsion cholesteryl ester. Also like chylomicrons, much more emulsion cholesteryl ester than triacylglycerol appeared in the liver 10 min after injection, and only trace amounts appeared in the spleen. Because the artificial emulsions gained apolipoproteins when incubated with plasma, their metabolism was probably facilitated by the recipient rat plasma apolipoproteins and so, in rats made apolipoprotein-deficient by treatment with estrogen, the removal of emulsions from the plasma was slowed. Removal was also slowed in hyperlipidemic rats fed a high-fat, high-cholesterol diet to expand the plasma pools of the triacylglycerol-rich lipoproteins and remnants. The results indicate that the metabolism of lymph chylomicrons can be modeled by artificial, protein-free lipid emulsions not only in the initial partial hydrolysis by lipoprotein lipase, but also in the delivery of a remnant-like particle to the liver.  相似文献   

10.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

11.
We have studied the cholesteryl ester transfer between HDL and VLDL in cyclophosphamide-treated rabbits, in order to explain the abnormal cholesteryl ester partition between these two lipoprotein classes. The hypertriglyceridemia caused by treatment with the drug was associated with cholesteryl ester- and triacylglycerol-rich VLDL and with HDL poor in esterified cholesterol but relatively enriched in triacylglycerol. These two lipoprotein classes were characterized by their chemical composition and by gel filtration chromatography. VLDL particles were slightly larger in size, compared with controls. Different transfer combinations were envisaged between these abnormal lipoproteins and control ones. The transfer study involved the plasma fraction of d greater than 1.21 g/ml containing the cholesteryl ester transfer protein (CETP). It appeared that the chemical composition of lipoproteins was responsible for the level of cholesteryl ester transfer between lipoproteins. Actually, when the cholesteryl ester acceptor lipoproteins (VLDL) were enriched in triacylglycerol, the transfer was enhanced. Therefore, the effect of lipolysis on the transfer has also been explored. Lipoprotein lipase seemed to enhance the transfer of cholesteryl ester from HDL to VLDL when these lipoproteins were normal, but an important decline was obtained when triacylglycerol-rich VLDL were lipolyzed. This study defines the relationship between lipoprotein chemical composition and transfer activity of cholesteryl ester from HDL to VLDL.  相似文献   

12.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

13.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

14.
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.  相似文献   

15.
As a further appraisal of lipoprotein interconversion and equilibration of lipid components a detailed examination was made of the chemical class and molecular species interrelationships among the major fasting plasma lipoprotein fractions within each of six male Type III and Type IV hyperlipemic subjects subsisting on free choice diets. The lipoprotein fractions were prepared by conventional ultracentrifugation and the lipid class and molecular species composition of the corresponding lipoprotein fractions were determined by gas chromatography of the intact glycerol esters and ceramides. In general, each lipoprotein fraction possessed a well defined lipid class composition, which was characterized by a dramatically decreasing triacylglycerol and increasing phospholipid and cholesteryl ester content, when progressing from the very low (VLDL) to the low (LDL) and high (HDL) density lipoproteins, as already established for normolipemic subjects. Likewise, the LDL, and LDL2 of the hyperlipemic subjects contained about two times higher proportion of total phospholipid as sphingomyelin than VLDL and HDL. Furthermore, the sphingomyelins of the HDL fraction contained about 30% more of the higher and 30% less of the lower molecular weight species than the sphingomyelins of the VLDL. Smaller differences were seen in the molecular species composition of the phosphatidylcholines, cholesteryl esters and triacylglycerols among the corresponding lipoproteins. In comparison to normolipemic subjects analyzed previously, the hyperlipemic subjects showed greater individual variability. Despite this variability the lipid class and molecular species composition in the hyperlipemic subjects was again incompatible with the hypothesis which postulates direct VLDL conversion into LDL and HDL under the influence of lipoprotein lipase and lecithin: cholesterol acyltransferase. The main differences between normolipemic and hyperlipemic plasma were found to reside in the number of the VLDL and LDL, lipoprotein particles and not in their chemical composition or physical structure, or in the apparent mechanism of their metabolic interconversion.  相似文献   

16.
Very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL) were isolated from the blood of healthy subjects and CHD patients. LDL from the blood of healthy individuals did not raise the intracellular lipid values within 24 h of cultivation. During intracellular lipid values within 24 h of cultivation. During the same incubation period. LDL obtained from the blood of CHD patients caused a 2- to 5-fold rise in cholesterol esters as well as a 1.5- to 3-fold rise in free cholesterol and triglycerides, while the intracellular phospholipid levels remained unchanged. In one of the three cases, the ability to raise the intracellular level of cholesterol esters was demonstrated by VLDL (500 micrograms/ml) derived from CHD patients blood. HDL did not affect the lipid levels in smooth muscle cells cultured from unaffected intima. The obtained data suggests that circulating LDL and, possibly, VLDL in the blood of CHD patients are capable of inducing the accumulation of fat in vascular wall cells.  相似文献   

17.
When [3H]cholesteryl ester-labeled low density (LDL) and intermediate density lipoproteins (IDL) from a normotriglyceridemic, hypercholesterolemic rabbit were injected into severely hypertriglyceridemic, hypercholesterolemic rabbits, 60% of the label appeared in very low density lipoproteins (VLDL) at 3 hr. A similar experiment showed that 40% of injected 131I-protein-labeled LDL appeared in the IDL fraction at 4 hr. Taken together, these data suggest that the exchange of LDL cholesteryl ester for VLDL triglyceride results in a density shift of injected LDL to the IDL density range. Furthermore, the percent of injected 131I-labeled LDL from normotriglyceridemic rabbits that appeared in the IDL fraction increased in rabbits with increasing levels of plasma triglyceride. This LDL density shift was reproduced in vitro by incubating iodinated LDL from normotriglyceridemic, hypercholesterolemic rabbits with concentrations of VLDL from hypertriglyceridemic, hypercholesterolemic rabbits similar to those in plasma. With such a system, it was shown that the percentage of LDL that appeared in the IDL fraction increased with time, was enhanced fourfold by the addition of plasma lipid transfer protein, increased with increasing molar ratio of triglyceride to cholesteryl ester in VLDL, but apparently did not increase with increasing VLDL particle number. These studies suggest that a pronounced decrease in density of lipoproteins that would normally appear in the LDL density range, resulting from loss of cholesteryl ester in exchange for VLDL triglyceride, may explain, at least in part, the reduced LDL levels in severe hypertriglyceridemia.  相似文献   

18.
Macrophage cholesterol removal by triglyceride-phospholipid emulsions   总被引:1,自引:0,他引:1  
Phospholipid liposomes were previously shown to mobilize cholesterol from cultured macrophage foam cells. Because Intralipid, a clinically available triglyceride-phospholipid emulsion, contains both phospholipid liposomes and triglyceride-emulsion particles, we sought to study its effect on macrophage cholesterol mobilization. Following an 18h incubation of J774 macrophages in serum-free medium supplemented with Intralipid, cholesteryl ester content decreased by up to 50% in previously cholesterol-loaded cells, and by 25% in non-loaded cells. Both components of Intralipid, liposomes and emulsion particles, independently caused reductions in cellular cholesteryl ester. We conclude that clinically available triglyceride-phospholipid emulsions can mobilize macrophage cholesterol in vitro.  相似文献   

19.
Hydrolysis by endothelial lipases of triacylglycerol-rich lipoproteins of diabetic origin were compared to lipoproteins of non-diabetic origin. The plasma lipoprotein fraction of density < 1.006 g/ml, including chylomicrons and VLDL, were incubated in vitro with post-heparin plasma (PHP) lipases. The lipoproteins of diabetic origin were hydrolysed at a significantly slower rate than lipoproteins from normal rats by the lipoprotein lipase component of PHP. However, if rats were fasted for 16 h prior to lipoprotein recovery, no differences in rates of VLDL hydrolysis were observed. Slower hydrolysis of lipoproteins of diabetic origin reflected a decrease in the apolipoprotein CII/CIII ratio and other changes in the apolipoprotein profile. To assess whether diabetic rats were less able to clear triacylglycerol independent of changes in the nature of the lipoproteins, we monitored the clearance of chylomicron-like lipid emulsions in hepatectomized rats. In vivo, emulsion triacylglycerol hydrolysis was not slowed due to diabetes. However, control and diabetic rats, which had been fasted for 16 h, cleared triacylglycerol at about twice the rate of fed rats. Triacylglycerol secretion rates in diabetic and control rats were similar, whether fed or fasted. We conclude that in streptozocin diabetic rats, hypertriglyceridemia was not due to overproduction of chylomicron- or VLDL-triacylglycerol, nor to decreased endothelial lipase activities. Rather, in fed diabetic rats, the triacylglycerol-rich lipoproteins are poorer substrates for lipoprotein lipase. This may lead to slower formation of remnants which would exacerbate slow remnant removal. VLDL of diabetic origin were hydrolysed as efficiently as VLDL from control donors, suggesting that in the fed state the lipolytic defect may be specific for chylomicrons.  相似文献   

20.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号