首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of HgCl2, NiCl2 and CoCl2 on Nostoc linckia (Roth) Born. et Flah. were studied. Low level (0.2 p.p.m.) of mercury increased heterocyst frequency, stimulated nitrate reductase and ammonium uptake, but significantly inhibited acetylene-reducing and glutamine-synthetase activities. In contrast, NiCl2 and CoCl2 greatly inhibited all of the above processes.  相似文献   

3.
Antecedents of Escherichia coli B have been traced through publications, inferences, and personal communication to a strain from the Institut Pasteur in Paris used by d'Herelle in his studies of bacteriophages as early as 1918 (a strain not in the current collection). This strain appears to have passed from d'Herelle to Bordet in 1920, and from Bordet to at least three other laboratories by 1925. The strain that Gratia received from Bordet was apparently passed to Bronfenbrenner by 1924 and from him to Luria around 1941. Delbrück and Luria published the first paper calling this strain B in 1942. Its choice as the common host for phages T1-T7 by the phage group that developed around Delbrück, Luria, and Hershey in the 1940s led to widespread use of B along with E. coli K-12, chosen about the same time for biochemical and genetic studies by Tatum and Lederberg. Not all currently available strains related to B are descended from the B of Delbrück and Luria; at least three strains with somewhat different characteristics were derived independently by Hershey directly from the Bronfenbrenner strain, and a strain that appears to have passed from Bordet to Wollman is in the current Collection of the Institut Pasteur. The succession of manipulations and strains that led from the B of Delbrück and Luria to REL606 and BL21(DE3) is given, established in part through evidence from their recently determined complete genome sequences.  相似文献   

4.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   

5.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

6.
This letter describes progress towards an M4 PAM preclinical candidate that resulted in the discovery of VU6005806/AZN-00016130. While the thieno[2,3-c]pyridazine core has been a consistent feature of key M4 PAMs, no work had previously been reported with respect to alternate functionality at the C3 position of the pyridazine ring. Here, we detail new chemistry and analogs that explored this region, and quickly led to VU6005806/AZN-00016130, which was profiled as a putative candidate. While, the β-amino carboxamide moiety engendered solubility limited absorption in higher species precluding advancement (or requiring extensive pharmaceutical sciences formulation), VU6005806/AZN-00016130 represents a new, high quality preclinical in vivo probe.  相似文献   

7.
Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl-α-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate and PPi, in the other sites. Combined with three existing structures of uracil phosphoribosyltransferase in complex with UMP and the allosteric inhibitor cytidine triphosphate (CTP), these structures provide valuable insight into the mechanism of allosteric transition from inhibited to active enzyme. The regulatory triphosphates bind at a site in the center of the tetramer in a different manner and change the quaternary arrangement. Both effectors contact Pro94 at the beginning of a long β-strand in the dimer interface, which extends into a flexible loop over the active site. In the GTP-bound state, two flexible loop residues, Tyr123 and Lys125, bind the PPi moiety of PRPP in the neighboring subunit and contribute to catalysis, while in the inhibited state, they contribute to the configuration of the active site for UMP rather than PRPP binding. The C-terminal Gly216 participates in a hydrogen-bond network in the dimer interface that stabilizes the inhibited, but not the activated, state. Tagging the C-terminus with additional amino acids generates an endogenously activated enzyme that binds GTP without effects on activity.  相似文献   

8.
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.  相似文献   

9.
Complement factor H (CFH) is an essential regulator of the complement system and plays very important roles in animal innate immunity. Although the complement system of amphioxus has been extensively studied, the expression in amphioxus and evolution of CFH gene remain unknown. In this study, we identified and characterized an amphioxus (Branchiostoma belcheri) CFH gene (designated as AmphiCFH). Our results showed that the full-length cDNA of AmphiCFH gene consists of 1295 bp nucleotides containing an 855 bp open reading frame (ORF) that was predicted to encode a 284 amino acid protein. The putative AmphiCFH protein possessed the characteristic of the CFH protein family, including typical CCP (complement control protein) domain. Real-time PCR analysis showed that the AmphiCFH was ubiquitously and differentially expressed in five investigated tissues (intestine, gills, notochord, muscles, and hepatic cecum). The expression level of the AmphiCFH gene was induced upon lipopolysaccharide stimulation, indicating that the AmphiCFH gene might be involved in innate immunity. In addition, phylogenetic analysis showed that the AmphiCFH gene was located between that of invertebrates and vertebrates, suggesting that the AmphiCFH gene is a member of the CFH gene family. In conclusion, our findings provided an insight into animal innate immunity and evolution of the CFH gene family.  相似文献   

10.
11.
Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.  相似文献   

12.
Legume seed products are used extensively in human and animal nutrition, but high levels of inclusion are often avoided as their secondary compounds can interfere with digestion and absorption of nutrients in the digestive tract. Due to the well-known benefits of some physicochemical treatments on nutritional value, this experiment was completed to assess effects of soaking and heat treatment on the nutritional value of dehulled and hulled X’pelon seeds (Vigna unguiculata (L.) Walp) to Nile tilapia (Oreochromis niloticus) fingerlings. Seeds were soaked for 16 h in a 2 g/kg sodium bisulphate solution in water. Seeds were divided into two lots, being hulled and dehulled. Three heat treatments were used to convert the seeds to meal, being 5 h of hot air flow (70 °C); autoclaving at 119 °C for 30 min to 1.05 kg/cm2, and 7 h in a forced air oven at 48 °C. The resultant crude protein (CP) quality of each meal was evaluated by amino acid analysis and by a tilapia feeding study in which fingerlings were fed one of eight diets, each containing 350 g CP/kg of DM, of which seven diets were formulated with 0.80 of CP provided by fish meal and 0.20 by the X’pelon meals and one control diet was formulated with fish meal as the sole CP source. The study encompassed 9 weeks during which fingerlings were fed ad libitum. Chemical and secondary compound analysis of treated seeds showed that heat flow reduced phytic acid by 34.9% and trypsin inhibitors and hemaglutinin decreased by 94.5%, while complete elimination was obtained with autoclaving. Soaking and heat treatment are suitable for partial or complete elimination of the secondary compounds of X’pelon seeds without affecting the content and bioavailability of amino acids, with heat treatment by hot air flow the best. Partial replacement of fish meal with X’pelon meal improved growth and feed efficiency of Nile tilapia, whether the meal was treated or raw.  相似文献   

13.
Atg1 is a Serine/Threonine protein kinase that plays a pivotal role in autophagy. A complete coding sequence of ATG1 is not available for the silkworm, Bombyx mori which is a good model for studying the autophagic process.  相似文献   

14.
In this study, one of Doublesex genes from the common freshwater cladoceran Daphnia carinata, designated DapcaDsx1, was cloned using primers based on homologous sequences and rapid amplification of cDNA ends (RACE). qPCR was employed to quantify differences in DapcaDsx1 expression between the different sexual phases, with expression levels being higher in sexual females. The role of DapcaDsx1 in the reproductive transformation was further investigated in parthenogenetic-phase females and sexual-phase females using whole-mount in situ hybridization. This cellular localization study showed specific expression of DapcaDsx1 in the thoracic segments, second antenna and part of the ventral carapace. Higher expression levels were exhibited in sexual females compared to parthenogenetic females. This suggests that the DapcaDsx1 gene plays significant roles in switching modes of reproduction and during sexual differentiation.  相似文献   

15.
Culture of spleen cells with dextran sulfate (DxS) and antigen at various different cell densities revealed a T-cell-dependent regulatory pathway not observed in conventional culture. This finding can be explained by the frequent presence in the cultures of a helper cell and the less frequent presence of a suppressor cell, both activated by antigen and DxS. The classic, radioresistant, antigen-specific, helper T cell was not regulated by this newly revealed pathway. The highly frequent, DxS-dependent helper T cell is Lyt-1+2?. The suppressive effect is mediated by a Lyt-1+2+ population consisting of helpers and latent suppressors that can be made active by DxS or Lyt-1+ cells. The specificity of the Lyt-1+ helper cells was not established, but the high frequency observed implies a nonspecific mechanism. The specificity of the suppressor effect was not determined by these experiments. This regulatory mechanism is similar to the phenomena exhibited by polyclonally activated T-cell populations.  相似文献   

16.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   

17.
18.
The switchover from a larval to a pupal epidermal commitment was studied on integument tissue fragments from early last-instar larvae (1–2 days after ecdysis) of Chilo suppressalis cultured in Grace's medium containing 0.01–0.5 μg/ml 20-hydroxyecdysone for 24–72 hr. Fragments were subsequently cultured in medium containing 1 μg/ml 20-hydroxyecdysone for 24 hr and maintained in hormone-free media for 6 additional days. The degree of switchover induction was measured as the ratio of the number of tissue fragments showing pupal characteristics to the total number of fragments used. The degree of switchover increased with the duration of culture, as well as with the concentration of the hormone (up to 0.1 μg/ml), in the first hormonal treatment. Above this concentration, apolysis and new cuticle formation were induced without change in the epidermal commitment. Cultured integument fragments from larvae in the diapause stage, 40–50 days after hatching, and from those in the penultimate stage, showed the switchover under almost the same hormonal conditions as those used with tissue from the early last-instar larvae. After the first hormone treatment, culture in hormone-free medium was unnecessary for cuticle tanning. Juvenile hormone II added to the medium (3 ng/ml) in the first hormonal treatment completely inhibited the switchover induced by 20-hydroxyecdysone. The potential use of the C. suppressalis integument as a bioassay system for juvenoids is discussed.  相似文献   

19.
20.
This is the first report on the purification and characterization of an anaplerotic enzyme from a Mycobacterium. The anaplerotic reactions play important roles in the biochemical differentiation of mycobacteria into non-replicating stages. We have purified and characterized a pyruvate carboxylase (PYC) from Mycobacterium smegmatis and cloned and sequenced its gene. We have developed a very rapid and efficient purification protocol that provided PYC with very high specific activities (up to 150 U/mg) that remained essentially unchanged over a month. The enzyme was found to be a homomultimer of 121 kDa subunits, mildly thermophilic, absolutely dependent on acyl-CoAs for activity and inhibited by ADP, by excess Mg2+, Co2+, and Mn2+, by aspartate, but not by glutamate and α-ketoglutarate. Supplementation of minimal growth medium with aspartate did not lower the cellular PYC level, rather doubled it; with glutamate the level remained unchanged. These observations would not fit the idea that the M. smegmatis enzyme fulfills a straightforward anaplerotic function; in a closely related organism, Corynebacterium glutamicum, PYC is the major anaplerotic enzyme. Growth on glucose provided 2-fold higher cellular PYC level than that observed with glycerol. The PYCs of M. smegmatis and Mycobacterium tuberculosis were highly homologous to each other. In M. smegmatis, M. tuberculosis and M. lepra, pyc was flanked by a putative methylase and a putative integral membrane protein genes in an identical operon-like arrangement. Thus, M. smegmatis could serve as a model for studying PYC-related physiological aspects of mycobacteria. Also, the ease of purification and the extraordinary stability could make the M. smegmatis enzyme a model for studying the structure–function relationships of PYCs in general. It should be noted that no crystal structure is available for this enzyme of paramount importance in all three domains of life, archaea, bacteria, and eukarya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号