首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.  相似文献   

2.
Interactions between lipid and cholesterol molecules in membranes play an important role in the structural and functional properties of cell membranes. Although structural properties of lipid-cholesterol mixtures have been extensively studied, an understanding of the role of cholesterol in the lateral organization of bilayers has been elusive. In this article, we propose a simple yet powerful model, based on self-consistent mean-field theory and molecular dynamics simulations, for lipid bilayers containing cholesterol. Properties predicted by our model are shown to be in excellent agreement with experimental data. Our model predicts that cholesterol induces structural changes in the bilayer through the formation of regions of ordered lipids surrounding each cholesterol molecule. We find that the "smooth" and "rough" sides of cholesterol play crucial roles in formation and distribution of the ordered regions. Our model is predictive in that input parameters are obtained from independent atomistic molecular dynamics simulations. The model and method are general enough to describe other heterogeneous lipid bilayers, including lipid rafts.  相似文献   

3.
Detailed atomistic computer simulations are now widely used to study biological membranes, including increasingly mixed lipid systems that involve, for example, cholesterol, which is a key membrane lipid. Typically, simulations of these systems start from a preassembled bilayer because the timescale on which self-assembly occurs in mixed lipid systems is beyond the practical abilities of fully atomistic simulations. To overcome this limitation and study bilayer self-assembly, coarse-grained models have been developed. Although there are several coarse-grained models for cholesterol reported in the literature, these generally fail to account explicitly for the unique molecular features of cholesterol that relate to its function and role as a membrane lipid. In this work, we propose a new coarse-grained model for cholesterol that retains the molecule's unique features and, as a result, can be used to study crystalline structures of cholesterol. In the development of the model, two levels of coarse-graining are explored and the importance of retaining key molecular features in the coarse-grained model that are relevant to structural properties is investigated.  相似文献   

4.
Buforin II is a 21-amino acid polycationic antimicrobial peptide derived from a peptide originally isolated from the stomach tissue of the Asian toad Bufo bufo gargarizans. It is hypothesized to target a wide range of bacteria by translocating into cells without membrane permeabilization and binding to nucleic acids. Previous research found that the structure and membrane interactions of buforin II are related to lipid composition. In this study, we used molecular dynamics (MD) simulations along with lipid vesicle experiments to gain insight into how buforin II interacts differently with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) lipids. Fluorescent spectroscopic measurements agreed with the previous assertion that buforin II does not interact with pure PC vesicles. Nonetheless, the reduced entry of the peptide into anionic PG membranes versus neutral PC membranes during simulations correlates with the experimentally observed reduction in BF2 translocation through pure PG membranes. Simulations showing membrane entry into PC also provide insight into how buforin II may initially penetrate cell membranes. Our MD simulations also allowed us to consider how neutral PE lipids affect the peptide differently than PC. In particular, the peptide had a more helical secondary structure in simulations with PE lipids. A change in structure was also apparent in circular dichroism measurements. PE also reduced membrane entry in simulations, which correlates with decreased translocation in the presence of PE observed in previous studies. Together, these results provide molecular-level insight into how lipid composition can affect buforin II structure and function and will be useful in efforts to design peptides with desired antimicrobial and cell-penetrating properties.  相似文献   

5.
The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer/monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl chain lengths. Based on the simulations, we calculate the pyrene dimerization rate and the lateral pressure at the location of the pyrenes. The dimerization rates are compared with the results of di-pyr-PC probes simulated in vacuum. The comparison indicates that the lateral pressure is not the dominant determinant of the excimer/monomer fluorescence ratio. Thus, the results do not support the usage of di-pyr-PC molecules to measure the shape of the lateral pressure profile. We yet discuss how the probes could potentially be exploited to gain qualitative insight of the changes in pressure profile when lipid composition is altered.  相似文献   

6.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

7.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

8.
Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alternative effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simulations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs, differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resorcinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism.  相似文献   

9.
Polymer electrolyte membranes (PEMs) are key component materials in fuel cell technology. Understanding the relationship between the elementary acts of proton transport and the operation of the entire cell on different time and length scales is therefore particularly rewarding. We discuss the results of recent atomistic computer simulations of proton transport in porous PEMs. Different models cover the range from individual local proton hops to diffusion processes with polymer mobility included.  相似文献   

10.
Regulation of membrane protein functions due to hydrophobic coupling with a lipid bilayer has been investigated. An energy formula describing interactions between lipid bilayer and integral ion channels with different structures, which is based on the screened Coulomb interaction approximation, has been developed. Here the interaction energy is represented as being due to charge-based interactions between channel and lipid bilayer. The hydrophobic bilayer thickness channel length mismatch is found to induce channel destabilization exponentially while negative lipid curvature linearly. Experimental parameters related to channel dynamics are consistent with theoretical predictions. To measure comparable energy parameters directly in the system and to elucidate the mechanism at an atomistic level we performed molecular dynamics (MD) simulations of the ion channel forming peptide–lipid complexes. MD simulations indicate that peptides and lipids experience electrostatic and van der Waals interactions for short period of time when found within each other’s proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides (in ion channel) and lipids (in lipid bilayer) due to mainly their charge properties. The results of in silico MD studies taken together with experimental observable parameters and theoretical energetic predictions suggest that the peptides induce ion channels inside lipid membranes due to peptide–lipid physical interactions. This study provides a new insight helping better understand of the underlying mechanisms of membrane protein functions in cell membrane leading to important biological implications.  相似文献   

11.
Great progress has been made in applying coarse-grain molecular dynamics (CGMD) simulations to the investigation of membrane biophysics. In order to validate the accuracy of CGMD simulations of membranes, atomistic scale detail is necessary for direct comparison to structural experiments. Here, we present our strategy for verifying CGMD lipid bilayer simulations. Through reverse coarse graining and subsequent calculation of the bilayer electron density profile, we are able to compare the simulations to our experimental low angle X-ray scattering (LAXS) data. In order to determine the best match to the experimental data, atomistic simulations are run at a range of areas (in the NPNAT ensemble), starting from distinct configurations extracted from the CGMD simulation (run in the NPT ensemble). We demonstrate the effectiveness of this procedure with two small, single-component bilayers, and suggest that the greater utility of our algorithm will be for CGMD simulations of more complex structures.  相似文献   

12.
Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non-toxic can, in principle, be rationalized. Armed with supercomputers and accurate force fields for biomolecular interactions, we can now investigate phenomena that span hundreds of nanoseconds. Although the phenomena involved in antimicrobial activity, (i.e., diffusion of peptides, interaction with lipid layers, secondary structure attainment, possible surface aggregation, possible formation of pores, and destruction of the lipid layer integrity) collectively span time scales still prohibitively long for classical mechanics simulations, it is now feasible to investigate the initial approach of single peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential.  相似文献   

13.
Little is known about the heterogenous organization of lipids in biological membranes. Sphingomyelin (SM) is a major plasma membrane lipid that forms lipid domains together with cholesterol and glycolipids. Using SM-specific toxin, lysenin, we showed that in cultured epithelial cells the accessibility of the toxin to SM is different between apical and basolateral membranes. Apical membranes are highly enriched with glycolipids. The inhibitory role of glycolipids in the binding of lysenin to SM was confirmed by comparing the glycolipid-deficient mutant melanoma cell line with its parent cell. Model membrane experiments indicated that glycolipid altered the local density of SM so that the affinity of the lipid for lysenin was decreased. Our results indicate that lysenin recognizes the heterogenous organization of SM in biomembranes and that the organization of SM differs between different cell types and between different membrane domains within the same cell. Isothermal titration calorimetry suggests that lysenin binding to SM is presumably the result of a SM-lysenin complex formation of specific stoichiometry, thus supporting the idea of the existence of small condensed lipid complexes consisting of just a few lipid molecules in living cells.  相似文献   

14.
Lipid bilayers determine the architecture of cell membranes and regulate a myriad of distinct processes that are highly dependent on the lateral organization of the phospholipid molecules that compose the membrane. Indeed, the mechanochemical properties of the membrane are strongly correlated with the function of several membrane proteins, which demand a very specific, highly localized physicochemical environment to perform their function. Several mesoscopic techniques have been used in the past to investigate the mechanical properties of lipid membranes. However, they were restricted to the study of the ensemble properties of giant bilayers. Force spectroscopy with AFM has emerged as a powerful technique able to provide valuable insights into the nanomechanical properties of supported lipid membranes at the nanometer/nanonewton scale in a wide variety of systems. In particular, these measurements have allowed direct measurement of the molecular interactions arising between neighboring phospholipid molecules and between the lipid molecules and the surrounding solvent environment. The goal of this review is to illustrate how these novel experiments have provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Here we report in detail the main discoveries achieved by force spectroscopy with AFM on supported lipid bilayers, and we also discuss on the exciting future perspectives offered by this growing research field.  相似文献   

15.
Why has nature acquired such a huge lipid repertoire? Although it would be theoretically possible to make a lipid bilayer fulfilling barrier functions with only one glycerophospholipid, there are diverse and numerous different lipid species. Lipids are heterogeneously distributed across the evolutionary tree with lipidomes evolving in parallel to organismal complexity. Moreover, lipids are different between organs and tissues and even within the same cell, different organelles have characteristic lipid signatures. At the molecular level, membranes are asymmetric and laterally heterogeneous. This lipid asymmetry at different scales indicates that these molecules may play very specific molecular functions in biology. Some of these roles have been recently uncovered: lipids have been shown to be essential in processes such as hypoxia and ferroptosis or in protein sorting and trafficking but many of them remain still unknown. In this review we will discuss the importance of understanding lipid diversity in biology across scales and we will share a toolbox with some of the emerging technologies that are helping us to uncover new lipid molecular functions in cell biology and, step by step, crack the membrane lipid code.  相似文献   

16.
细胞膜局部区域可形成富含饱和脂质、胆固醇、鞘脂的脂筏域作为其信号转导调控平台。传统实验手段在研究脂筏及其功能时受到系统复杂度高及区域结构瞬时性强等制约。近年来,分子动力学模拟技术为细胞膜的组织原则提供了重要的理论支撑,从简单的单一组分模型到多组分系统转变,最终形成了越来越多的细胞膜仿真模型。其中,粗粒化模拟由于其简化模型,可大副拓展模拟体系的复杂程度与模拟时间,在细胞膜以及蛋白质-脂质相互作用相关研究中得到了广泛应用。本文采用MARTINI粗粒化力场模拟,构建了一种含有阴离子脂质磷脂酰肌醇二磷酸(phosphatidylinositol diphosphate, PIP2)的混合膜体系。模拟结果表明,该体系在适当温度及饱和度条件下,能自发分层形成脂筏域;膜厚度、膜组分分布、膜组分流动性等多种参数均表明,脂筏结构形成且符合其结构特征;少量PIP2添加不影响分层特性且PIP2对脂筏具有显著亲和性。此外,利用该模型以跨膜信号蛋白CD3ε为例研究了脂筏域体系中蛋白质-脂质相互作用。结果表明,PIP2-CD3ε胞内区相互作用可能是脂筏招募CD3ε的驱动力,且该过程可受钙离子调控。本工作体现了粗粒化模拟在仿真膜相关研究中的巨大优势及良好应用前景。  相似文献   

17.
The structure of cell membranes has been intensively investigated and many models and concepts have been proposed for the lateral organization of the plasma membrane. While proteomics and lipidomics have identified many if not all membrane components, how lipids and proteins interactions are coordinated in a specific cell function remains poorly understood. It is generally accepted that the organization of the plasma membrane is likely to play a critical role in the regulation of cell function such as receptor signalling by governing molecular interactions and dynamics. In this review we present different plasma membrane models and discuss microscopy approaches used for investigating protein behaviour, distribution and lipid organization.  相似文献   

18.
RNA molecules are now known to be involved in the processing of genetic information at all levels, taking on a wide variety of central roles in the cell. Understanding how RNA molecules carry out their biological functions will require an understanding of structure and dynamics at the atomistic level, which can be significantly improved by combining computational simulation with experiment. This review provides a critical survey of the state of molecular dynamics (MD) simulations of RNA, including a discussion of important current limitations of the technique and examples of its successful application. Several types of simulations are discussed in detail, including those of structured RNA molecules and their interactions with the surrounding solvent and ions, catalytic RNAs, and RNA-small molecule and RNA-protein complexes. Increased cooperation between theorists and experimentalists will allow expanded judicious use of MD simulations to complement conceptually related single molecule experiments. Such cooperation will open the door to a fundamental understanding of the structure-function relationships in diverse and complex RNA molecules. .  相似文献   

19.
The molecular interaction between common polymer chains and the cell membrane is unknown. Molecular dynamics simulations offer an emerging tool to characterise the nature of the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. Herein we characterise with all-atomistic and coarse-grained molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a phospholipid membrane. We find that the length of the polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilise advanced sampling techniques in molecular dynamics to characterise the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. Finally, we perform coarse-grained molecular dynamics simulations of slightly larger membranes with polymers of the same length and characterise the results as compared with all-atomistic molecular dynamics simulations. These results can be used to design polymer chain lengths and chemistries to optimise their interaction with cell membranes at the molecular level.  相似文献   

20.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号