首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.  相似文献   

2.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) induces apoptosis in a variety of cancer cell lines with little or no effect on normal cells. However, its effect is limited as some cancers including pancreatic cancer show de novo resistance to TRAIL induced apoptosis. In this study we report that GSK-3 inhibition using the pharmacologic agent AR-18, enhanced TRAIL sensitivity in a range of pancreatic and prostate cancer cell lines. This sensitization was found to be caspase-dependent, and both pharmacological and genetic knock-down of GSK-3 isoforms resulted in apoptotic features as shown by cleavage of PARP and caspase-3. Elevated levels of reactive oxygen intermediates and disturbance of mitochondrial membrane potential point to a mitochondrial amplification loop for TRAIL-induced apoptosis after GSK-3 inhibition. Consistent with this, overexpression of anti-apoptotic mitochondrial targets such as Bcl-XL, Mcl-1, and Bcl-2 rescued PANC-1 and PPC-1 cells from TRAIL sensitization. However, overexpression of the caspase-8 inhibitor CrmA also inhibited the sensitizing effects of GSK-3 inhibitor, suggesting an additional role for GSK-3 that inhibits death receptor signaling. Acute treatment of mice bearing PANC-1 xenografts with a combination of AR-18 and TRAIL also resulted in a significant increase in apoptosis, as measured by caspase-3 cleavage. Sensitization to TRAIL occurred despite an increase in β-catenin due to GSK-3 inhibition, suggesting that the approach might be effective even in cancers with dysregulated β-catenin. These results suggest that GSK-3 inhibitors might be effectively combined with TRAIL for the treatment of pancreatic cancer.  相似文献   

3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers tumor-specific apoptosis. However, some tumors and cancer cell lines are resistant to TRAIL. Here, the effect of the non-steroidal anti-inflammatory drug aspirin on sensitization of human cervical cancer cells to TRAIL and the underlying mechanism(s) of the effect were explored. Combination treatment with aspirin and TRAIL markedly enhanced apoptotic cell death, as assessed by lactate dehydrogenase (LDH) assay and analysis of cell cycle sub-G1 phase. The two agents together activated the several caspases and mitochondrial signaling pathway. Whereas Mcl-1 protein level was increased and extracellular signal-related kinase (ERK)1/2 was activated in cells treated with TRAIL alone, combination treatment dramatically inhibited ERK1/2 activation and down-regulated Mcl-1 protein level. An inhibitor of ERK1/2 activation, PD98059, also augmented TRAIL-induced apoptosis. Combination treatment with PD98059 and TRAIL showed the activation of caspases and mitochondrial pathway, and the down-regulation of Mcl-1 level. These results suggest that cancer cells can be sensitized to TRAIL-induced apoptosis by pre-treatment with aspirin via suppression of ERK1/2 activation. These findings provide a basis for further exploring the potential applications of this combination approach for the treatment of cancer, including cervical cancer.  相似文献   

4.
Epidermal growth factor (EGF) protects against death receptor induced apoptosis in epithelial cells. Herein, we demonstrate that EGF protection against tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis is mediated by increased expression of the Bcl-2 family member myeloid cell leukemia 1 (Mcl-1). EGF increased the mRNA and protein levels of Mcl-1. Furthermore, expression of ErbB1 alone or in combination with ErbB2 in NIH3T3 cells up-regulates Mcl-1 following EGF treatment. In addition, up-regulation of Mcl-1 by EGF is mediated through AKT and NFkappaB activation since kinase inactive AKT and DeltaIkappaB effectively blocks this up-regulation. NFkappaB was also critical for the ability of EGF to prevent TRAIL induced apoptosis as a dominant negative IkappaB (DeltaIkappaB) blocked NFkappaB activation, and relieved EGF protection against TRAIL mediated mitochondrial cytochrome-c release and apoptosis. Finally, anti-sense oligonucleotides directed against Mcl-1 effectively reduced the protein levels of Mcl-1 and blocked EGF protection against TRAIL induced mitochondrial cytochrome-c release and apoptosis. Taken together, EGF signaling leads to increased Mcl-1 expression that is required for blockage of TRAIL induced apoptosis.  相似文献   

5.
Identification of mechanisms of modulation of the TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis is important for its potential use in anticancer therapy. Ethanol can induce cell death in vitro and in vivo by different signalling pathways. Its effect in combination with death ligands is unknown. We investigated how ethanol modulates the effects of TRAIL in colon cancer cells. After combined TRAIL and ethanol treatment, a potentiation of caspase-8, -9, -3 activation, a proapoptotic Bid protein cleavage, a decrease of mitochondrial membrane potential, a complete poly(ADP)ribose polymerase cleavage, and disappearance of antiapoptotic Mcl-1 protein were demonstrated. Ethanol acts as a potent agent sensitizing colon cancer cells to TRAIL-induced apoptosis.  相似文献   

6.
7.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death through the caspase activation cascade and translocation of cleaved Bid (tBid) by the apical caspase-8 to mitochondria to induce oligomerization of multidomain Bax and Bak. However, the roles of prosurvival Bcl-2 family proteins in TRAIL apoptosis remain elusive. Here we showed that, besides the specific cleavage and activation of Bid by caspase-8 and caspase-3, TRAIL-induced apoptosis in Jurkat T cells required the specific cleavage of Mcl-1 at Asp-127 and Asp-157 by caspase-3, while other prototypic antiapoptotic factors such as Bcl-2 or Bcl-X(L) seemed not to be affected. Mutation at Asp-127 and Asp-157 of Mcl-1 led to cellular resistance to TRAIL-induced apoptosis. In sharp contrast to cycloheximide-induced Mcl-1 dilapidation, TRAIL did not activate proteasomal degradation of Mcl-1 in Jurkat cells. We further established for the first time that the C-terminal domain of Mcl-1 became proapoptotic as a result of caspase-3 cleavage, and its physical interaction and cooperation with tBid, Bak, and voltage-dependent anion-selective channel 1 promoted mitochondrial apoptosis. These results suggested that removal of N-terminal domains of Bid by caspase-8 and Mcl-1 by caspase-3 enabled the maximal mitochondrial perturbation that potentiated TRAIL-induced apoptosis.  相似文献   

8.
9.
Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.  相似文献   

10.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

11.
12.
Glioblastoma (GBM) is the most aggressive form of primary brain tumour, with dismal patient outcome. Treatment failure is associated with intrinsic or acquired apoptosis resistance and the presence of a highly tumourigenic subpopulation of cancer cells called GBM stem cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising novel therapy for some treatment-resistant tumours but unfortunately GBM can be completely resistant to TRAIL monotherapy. In this study, we identified Mcl-1, an anti-apoptotic Bcl-2 family member, as a critical player involved in determining the sensitivity of GBM to TRAIL-induced apoptosis. Effective targeting of Mcl-1 in TRAIL resistant GBM cells, either by gene silencing technology or by treatment with R-roscovitine, a cyclin-dependent kinase inhibitor that targets Mcl-1, was demonstrated to augment sensitivity to TRAIL, both within GBM cells grown as monolayers and in a 3D tumour model. Finally, we highlight that two separate pathways are activated during the apoptotic death of GBM cells treated with a combination of TRAIL and R-roscovitine, one which leads to caspase-8 and caspase-3 activation and a second pathway, involving a Mcl-1:Noxa axis. In conclusion, our study demonstrates that R-roscovitine in combination with TRAIL presents a promising novel strategy to trigger cell death pathways in glioblastoma.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.  相似文献   

14.
Silibinin, a flavonolignan, is the major active component of the milk thistle plant (Silybum marianum) and has been shown to possess anti-neoplastic properties. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent which selectively induces apoptosis in cancer cells. However, resistance to TRAIL-induced apoptosis is an important and frequent problem in cancer treatment. In this study, we investigated the effect of silibinin and TRAIL in an in vitro model of human colon cancer progression, consisting of primary colon tumor cells (SW480) and their derived TRAIL-resistant metastatic cells (SW620). We showed by flow cytometry that silibinin and TRAIL synergistically induced cell death in the two cell lines. Up-regulation of death receptor 4 (DR4) and DR5 by silibinin was shown by RT-PCR and by flow cytometry. Human recombinant DR5/Fc chimera protein that has a dominant-negative effect by competing with the endogenous receptors abrogated cell death induced by silibinin and TRAIL, demonstrating the activation of the death receptor pathway. Synergistic activation of caspase-3, -8, and -9 by silibinin and TRAIL was shown by colorimetric assays. When caspase inhibitors were used, cell death was blocked. Furthermore, silibinin and TRAIL potentiated activation of the mitochondrial apoptotic pathway and down-regulated the anti-apoptotic proteins Mcl-1 and XIAP. The involvement of XIAP in sensitization of the two cell lines to TRAIL was demonstrated using the XIAP inhibitor embelin. These findings demonstrate the synergistic action of silibinin and TRAIL, suggesting chemopreventive and therapeutic potential which should be further explored.  相似文献   

15.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53?/?) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

16.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells. Co-treatment of TRAIL-resistant RKO or HT-29 cells with HHT and TRAIL led to the effective induction of apoptosis and the complete elimination of the treated cells. HHT suppressed the expression of the anti-apoptotic proteins Mcl-1 and cFLIP and enhanced the TRAIL-triggered activation of JNK and p38 kinases. The shRNA-mediated down-regulation of cFLIP or Mcl-1 in HT-29 or RKO cells variably enhanced their TRAIL-induced apoptosis but it did not markedly sensitize them to TRAIL-mediated growth suppression. However, with the notable exception of RKO/sh cFLIP cells, the downregulation of cFLIP or Mcl-1 significantly lowered the effective concentration of HHT in HHT + TRAIL co-treatment. Combined HHT + TRAIL therapy also led to the strong suppression of HT-29 tumors implanted into immunodeficient mice. Thus, HHT represents a very efficient enhancer of TRAIL-induced apoptosis with potential application in TRAIL-based, anti-cancer combination therapy.  相似文献   

17.
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.  相似文献   

18.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53−/−) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

19.
The current study demonstrates a novel cross-talk mechanism between the TRAIL receptor death signaling pathway and the mitochondria. This newly identified pathway is regulated at the mitochondrial outer membrane by a complex between the prosurvival Bcl-2 member, Mcl-1 and the BH3-only protein, Bim. Under non-apoptotic conditions, Bim is sequestered by Mcl-1. Direct degradation of Mcl-1 by TRAIL-activated caspase-8 or caspase-3 produces Mcl-1-free Bim that mediates a Bax-dependent apoptotic cascade. Using Mcl-1 or Bim RNAi, we demonstrate that a loss in Mcl-1 expression significantly enhances the mitochondrial apoptotic response to TRAIL that is now mediated by freed Bim. Whereas overexpression of Mcl-1 contributes to the preservation of the mitochondrial membrane potential, Mcl-1 knockdown facilitates the Bim-mediated dissipation of this potential. Loss of Mcl-1 contributes to an increased level of caspase activity downstream of the mitochondrial response to TRAIL. Furthermore, the Mcl-1 expression level at the mitochondrial outer membrane determines the release efficiency for the apoptogenic proteins cytochrome c, Smac, and HtrA2 in response to Bim. These are the first findings to demonstrate the involvement of Bim in the TRAIL-mediated mitochondrial cascade. They also suggest that Mcl-1 may serve as a direct substrate for TRAIL-activated caspases implying the existence of a novel TRAIL/caspase-8/Mcl-1/Bim communication mechanism between the extrinsic and the intrinsic apoptotic pathways.  相似文献   

20.
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号