首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

2.
Vascular endothelial cells are highly sensitive to oxidative stress, and this is one of the mechanisms by which widespread endothelial dysfunction is induced in most cardiovascular diseases and disorders. However, how these cells can survive in oxidative stress environments remains unclear. Salidroside, a traditional Chinese medicine, has been shown to confer vascular protective effects. We aimed to understand the role of autophagy and its regulatory mechanisms by treating human umbilical vein endothelial cells (HUVECs) with salidroside under oxidative stress. HUVECs were treated with salidroside and exposed to hydrogen peroxide (H2O2). The results indicated that salidroside exerted cytoprotective effects in an H2O2-induced HUVEC injury model and suppressed H2O2-induced apoptosis of HUVECs. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased oxidative stress-induced HUVEC apoptosis, while the autophagy activator rapamycin induced anti-apoptosis effects in HUVECs. Salidroside increased autophagy and decreased apoptosis of HUVECs in a dose-dependent manner under oxidative stress. Moreover, 3-MA attenuated salidroside-induced HUVEC autophagy and promoted apoptosis, whereas rapamycin had no additional effects compared with salidroside alone. Salidroside upregulated AMPK phosphorylation but downregulated mTOR phosphorylation under oxidative stress; however, administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with salidroside alone. These results suggest that autophagy is a protective mechanism in HUVECs under oxidative stress and that salidroside might promote autophagy through activation of the AMPK pathway and downregulation of mTOR pathway.  相似文献   

3.
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK–p38 MAPK–Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim.  相似文献   

4.
Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.  相似文献   

5.
Vitamin E succinate (VES), a derivative of vitamin E, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing apoptotic cell death. The effects of VES on autophagy, an intricate programmed process which helps cells survive in some stressed situations by degrading some cytoplasmic material, are unclear. When human gastric cancer cells SCG-7901 were exposed to VES, both the level of microtubule-associated protein 1 light chain 3 and the yeast ATG6 homolog Beclin-1 increased, and related autophagy genes were activated, thereby suggesting that autophagy was induced by VES. We also observed that VES-induced autophagy was accompanied by the activation of AMP-activated protein kinases (AMPK). VES-induced autophagy decreased when AMPK was inhibited by using small interfering RNA (siRNA), thereby suggesting that VES-induced autophagy is mediated by AMPK. Moreover, further studies revealed that the decreased activity of mammalian target of rapamycin (mTOR) and its downstream targets P70S6K and 4EBP-1 were involved in VES-activated autophagy associated with AMPK activation. The experiments also showed that the activity of protein kinases B (Akt)-mTOR axis was inhibited by VES. VES-induced AMPK activation could be attenuated by Akt activation. Overall, our studies demonstrated that AMPK was involved in the VES-induced autophagy. Crosstalk exists between AMPK and the Akt/mTOR axis. The results elucidated the mechanism of VES-induced autophagy in human gastric cancer cells.  相似文献   

6.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

7.
《Cytokine》2015,74(2):219-224
TGF-β1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-β1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-β signaling, and through these pathways it is able to enhance TGF-β induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-β1 combination on cell growth and on TGF-β and mTOR signalling events in lymphoma cells.Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-β1 induced apoptosis and restored TGF-β1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-β sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin + TGF-β1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin + TGF-β1 induced apoptosis was not completely eliminated by a caspase inhibitor.These results suggest that high mTOR activity contributes to TGF-β resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-β1.  相似文献   

8.
Glucagon-like peptide-1 (GLP-1), an effective therapeutic agent for the treatment of diabetes, has been proven to protect pancreatic beta cells through many pathways. Recent evidence demonstrates that AMP-activated protein kinase (AMPK), as a metabolic regulator, coordinates beta-cell protein synthesis through regulation of the mammalian target of rapamycin (mTOR) signaling pathway. The purpose of the present study was to explore whether liraglutide, a human GLP-1 analogue, protects beta cells via AMPK/mTOR signaling. We evaluated INS-1 beta-cell line proliferation using the Cell Counting Kit-8, and examined the effect of GLP-1 on cellular ATP levels using an ATP assay kit. mTOR pathway protein expression levels were tested by Western blotting and glucolipotoxicity-induced cell apoptosis was evaluated by flow cytometry. Liraglutide increased beta-cell viability at an optimum concentration of 100 nmol/L in the presence of 11.1 or 30 mmol/L glucose. Liraglutide (100 nmol/L) activated mTOR and its downstream effectors, 70-kDa ribosomal protein S6 kinase and eIF4E-binding protein-1, in INS-1 cells. This effect was abated by pathway blockers: the AMPK activator AICAR and the mTOR inhibitor rapamycin. Furthermore, the effect of liraglutide on beta-cell proliferation was inhibited by AICAR and rapamycin. Liraglutide increased cellular ATP levels. In addition, liraglutide protected beta cells from glucolipotoxicity-induced apoptosis. This response was also prevented by rapamycin treatment. These results suggest that the enhancement of beta-cell proliferation by that GLP-1 receptor agonist liraglutide is mediated, at least in part, by AMPK/mTOR signaling. Liraglutide also prevents beta-cell glucolipotoxicity by activating mTOR.  相似文献   

9.
Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.  相似文献   

10.
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.  相似文献   

11.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Significant discoveries have recently contributed to our knowledge of intracellular growth factor and nutrient signaling via mTOR (mammalian target of rapamycin). This signaling pathway is essential in cellular metabolism and cell survival by enhancing protein translation through phosphorylation of 4EBP-1 and p70S6K. Growth factors like insulin-like growth factor-I induce mTOR to prevent cell death during cellular stress. Agents targeting mTOR are of major interest as anticancer agents. We show here, using human breast cancer cells, that certain types of stress activate mTOR leading to 4E-BP1 and p70S6K phosphorylation. UV treatment increased phosphorylation of the translation inhibitor eIF2alpha, suggesting a potential mechanism for UV activation of Akt and mTOR. c-Myc, a survival protein regulated by cap-dependent protein translation, increased with IGF-I treatment, but this response was not inhibited by rapamycin. Additionally, UV treatment potently increased c-Myc degradation, which was reduced by co-treatment with the proteasomal inhibitor, MG-132. Together, these data suggest that protein translation does not strongly mediate cell survival in these models. In contrast, the phosphorylation status of retinoblastoma protein (pRB) was mediated by mTOR through its inhibitory effects on phosphatase activity. This effect was most notable during DNA damage and rapamycin treatment. Hypophosphorylated pRB was susceptible to inactivation by caspase-mediated cleavage, resulting in cell death. Reduction of pRB expression inhibited IGF-I survival effects. Our data support an important role of phosphatases and pRB in IGF-I/mTOR-mediated cell survival. These studies provide new directions in optimizing anticancer efficacy of mTOR inhibitors when used in combination with DNA-damaging agents.  相似文献   

13.
Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.  相似文献   

14.
Gallbladder carcinoma is an aggressive malignancy with high mortality mainly due to the limited potential for curative resection and its resistance to chemotherapeutic agents. Here, we show that the histone deacetylase inhibitors (HDACIs) trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA) reduce the proliferation and induce apoptosis of gallbladder carcinoma cells by suppressing the AKT/mammalian target of rapamycin (mTOR) signaling. Gallbladder carcinoma SGC-996 cells were treated with different concentrations of TSA and SAHA for different lengths of time. Cell proliferation and morphology were assessed with MTT assay and microscopy, respectively. Cell cycle distribution and cell apoptosis were analyzed with flow cytometry. Western blotting was used to detect the proteins related to apoptosis, cell cycle, and the AKT/mTOR signaling pathway. Our data showed that TSA and SAHA reduced SGC-996 cell viability and arrested cell cycle at the G1 phase in a dose- and time-dependent manner. TSA and SAHA promoted apoptosis of SGC-996 cells, down-regulated the expression of cyclin D1, c-Myc and Bmi1, and decreased the phosphorylation of AKT, mTOR p70S6K1, S6 and 4E-BP1. Additionally, the mTOR inhibitor rapamycin further reduced the cell viability of TSA- and SAHA-treated SGC-996 cells and the phosphorylation of mTOR, whereas the mTOR activator 1,2-dioctanoyl-sn-glycero-3-phosphate (C8-PA) exerted the opposite influence. Our results demonstrate that histone deacetylase inhibitors (HDACIs) suppress the proliferation of gallbladder carcinoma cell via inhibition of AKT/mTOR signaling. These findings offer a mechanistic rationale for the application of HDACIs in gallbladder carcinoma treatment.  相似文献   

15.
Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces a cellular stress response characterized by rapid and sustained activation of the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway and selective apoptosis of cells lacking functional p53. Here we have investigated how mTOR regulates ASK1 signaling using p53-mutant rhabdomyosarcoma cells. In Rh30 cells, ASK1 was found to physically interact with protein phosphatase 5 (PP5), previously identified as a negative regulator of ASK1. Rapamycin did not affect either protein level of PP5 or association of PP5 with ASK1. Instead, rapamycin caused rapid dissociation of the PP2A-B" regulatory subunit (PR72) from the PP5-ASK1 complex, which was associated with reduced phosphatase activity of PP5. This effect was dependent on expression of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Down-regulation of PP5 activity by rapamycin coordinately activated ASK1, leading to elevated phosphorylation of c-Jun. Amino acid deprivation, which like rapamycin inhibits mTOR signaling, also inhibited PP5 activity, caused rapid dissociation of PR72, and activated ASK1 signaling. Overexpression of PP5, but not the PP2A catalytic subunit, blocked rapamycin-induced phosphorylation of c-Jun, and protected cells from rapamycin-induced apoptosis. The results suggest that PP5 is downstream of mTOR, and positively regulated by the mTOR pathway. The findings suggest that in the absence of serum factors, mTOR signaling suppresses apoptosis through positive regulation of PP5 activity and suppression of cellular stress.  相似文献   

16.
Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury.  相似文献   

17.
Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity.  相似文献   

18.
The molecular basis for induction of apoptosis in melanoma cells by vincristine remains unknown. Here we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found for the first time that vincristine induces AMPK activation (AMPKα, Thr 172) and Acetyl-CoA carboxylase (ACC, Ser 79) (a downstream molecular target of AMPK) phosphorylation in cultured melanoma cells in vitro. Reactive oxygen species (ROS) dependent LKB1 activation serves as the upstream signal for AMPK activation. AMPK inhibitor (compound C) or AMPKα siRNA knockdown inhibits vincristine induced B16 melanoma cell apoptosis, while AMPK activator 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) enhances it. AMPK activation is involved in vincristine induced p53 phosphorylation and stabilization, the latter is known to mediate melanoma cell apoptosis. Further, activation of AMPK by vincristine inhibits mTOR Complex 1 (mTORC1) in B16 melanoma cells, which serves as another important mechanism to induce melanoma cell apoptosis. Our study provides new insights into understanding the cellular and molecular mechanisms of vincristine induced cancer cell death/apoptosis. We suggest that combining AMPK activator AICAR with vincristine may have potential to be used as a new therapeutic intervention against melanoma.  相似文献   

19.
8‐chloro‐cyclic AMP (8‐Cl‐cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti‐cancer drug. However, the exact mechanism of 8‐Cl‐cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine‐specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8‐Cl‐cAMP and 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8‐Cl‐cAMP. However, treatment with 8‐Cl‐cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK‐DN (AMPK‐dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8‐Cl‐cAMP‐induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ‐targeted siRNA inhibited the 8‐Cl‐cAMP‐ and AICAR‐mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8‐Cl‐cAMP and AICAR. Moreover, an Akt1/PKBα‐targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8‐Cl‐cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8‐Cl‐cAMP‐ and AICAR‐induced growth inhibition. J. Cell. Physiol. 228: 890–902, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Macrophage foam cells formation is the most important process in atherosclerotic plaque formation and development. Toll-like receptor 4 (TLR4) is one of the important innate immune sensors of endogenous damage signals and crucial for regulating inflammation. Growing evidence indicates that TLR4 plays a very important role in macrophage foam cells formation. However, the underlying mechanisms regulating TLR4 expression in macrophage are not fully understood. In this study, we induced THP-1 macrophage foam cells formation with oxidative modified low-density lipoprotein (ox-LDL). We observed that TLR4 mRNA and protein expression were markedly up-regulated, and the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream target p70S6K were promoted during foam cells formation. The mTOR inhibitor rapamycin blocked mTOR phosphorylation and inhibited TLR4 expression induced by ox-LDL. Silencing mTOR, rictor or raptor protein expression by small interfering RNA, also inhibited the up-regulation of TLR4 expression, respectively. Inhibition of mTOR with rapamycin reversed the down-regulation of cellular lipid efflux mediator ABCA1, which resulted from the activation of TLR4 by ligands. These data suggested that TRL4 expression was up-regulated by a mechanism dependent on mTOR signal pathway activation during THP-1 macrophage foam cells formation. Inhibition of ox-LDL induced mTOR activation reduced TLR4 expression, and improved the impaired lipid efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号