首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

3.
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

4.
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

5.
X-linked ichthyosis is a relatively common syndromic form of ichthyosis most often due to deletions in the gene encoding the microsomal enzyme, steroid sulfatase, located on the short area of the X chromosome. Syndromic features are mild or unapparent unless contiguous genes are affected. In normal epidermis, cholesterol sulfate is generated by cholesterol sulfotransferase (SULT2B1b), but desulfated in the outer epidermis, together forming a ‘cholesterol sulfate cycle’ that potently regulates epidermal differentiation, barrier function and desquamation. In XLI, cholesterol sulfate levels my exceed 10% of total lipid mass (≈ 1% of total weight). Multiple cellular and biochemical processes contribute to the pathogenesis of the barrier abnormality and scaling phenotype in XLI. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

6.
Lipoxygenases (LOX) are key enzymes in the biosynthesis of a variety of highly active oxylipins which act as signaling molecules involved in the regulation of many biological processes. LOX are also able to oxidize complex lipids and modify membrane structures leading to structural changes that play a role in the maturation and terminal differentiation of various cell types. The mammalian skin represents a tissue with highly abundant and diverse LOX metabolism. Individual LOX isozymes are thought to play a role in the modulation of epithelial proliferation and/or differentiation as well as in inflammation, wound healing, inflammatory skin diseases and cancer. Emerging evidence indicates a structural function of a particular LOX pathway in the maintenance of skin permeability barrier. Loss-of-function mutations in the LOX genes ALOX12B and ALOXE3 have been found to represent the second most common cause of autosomal recessive congenital ichthyosis and targeted disruption of the corresponding LOX genes in mice resulted in neonatal death due to a severely impaired permeability barrier function. Recent data indicate that LOX action in barrier function can be traced back to the oxygenation of linoleate-containing ceramides which constitutes an important step in the formation of the corneocyte lipid envelope. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

7.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

8.
ATP-binding cassette (ABC) transporters form a large superfamily of transporters that bind and hydrolyze ATP to transport various molecules across limiting membranes or into vesicles. The ABCA subfamily members are thought to transport lipid materials. ABCA12 is a keratinocyte transmembrane lipid transporter protein associated with the transport of lipids via lamellar granules. ABCA12 is considered to transport lipids including ceramides to form extracellular lipid layers in the stratum corneum of the epidermis, which is essential for skin barrier function. ABCA12 mutations are known to underlie the three major types of autosomal recessive congenital ichthyoses: harlequin ichthyosis, lamellar ichthyosis and congenital ichthyosiform erythroderma. ABCA12 mutations result in defective lipid transport via lamellar granules in the keratinocytes, leading to ichthyosis phenotypes from malformation of the stratum corneum lipid barrier. Studies on ABCA12-deficient bioengineered models have revealed that lipid transport by ABCA12 is required for keratinocyte differentiation and epidermal morphogenesis. Defective lipid transport due to loss of ABCA12 function leads to the accumulation of intracellular lipids, including glucosylceramides and gangliosides, in the epidermal keratinocytes. The accumulation of gangliosides seems to result in the apoptosis of Abca12−/− keratinocytes. It was reported that AKT activation occurs in Abca12−/− granular-layer keratinocytes, which suggests that AKT activation serves to prevent the cell death of Abca12−/− keratinocytes. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

9.
Abstract In comparison with the wild-type, mutants of Rhodopseudomonas sphaeroides defective in bacteriochlorophyll synthesis fail to alter their lipid composition on shifting from non-photosynthetic to photosynthetic growth conditions. The earlier the lesion in the bacteriochlorophyll synthetic pathway, the more severe the effect on membrane lipid composition, indicating that acyl lipid and pigment syntheses are co-ordinated and linked to pigment-protein complex assembly.  相似文献   

10.
Many of the ichthyoses are associated with inherited disorders of lipid metabolism. These disorders have provided unique models to dissect physiologic processes in normal epidermis and the pathophysiology of more common scaling conditions. In most of these disorders, a permeability barrier abnormality "drives" pathophysiology through stimulation of epidermal hyperplasia. Among primary abnormalities of nonpolar lipid metabolism, triglyceride accumulation in neutral lipid storage disease as a result of a lipase mutation provokes a barrier abnormality via lamellar/nonlamellar phase separation within the extracellular matrix of the stratum corneum (SC). Similar mechanisms account for the barrier abnormalities (and subsequent ichthyosis) in inherited disorders of polar lipid metabolism. For example, in recessive X-linked ichthyosis (RXLI), cholesterol sulfate (CSO(4)) accumulation also produces a permeability barrier defect through lamellar/nonlamellar phase separation. However, in RXLI, the desquamation abnormality is in part attributable to the plurifunctional roles of CSO(4) as a regulator of both epidermal differentiation and corneodesmosome degradation. Phase separation also occurs in type II Gaucher disease (GD; from accumulation of glucosylceramides as a result of to beta-glucocerebrosidase deficiency). Finally, failure to assemble both lipids and desquamatory enzymes into nascent epidermal lamellar bodies (LBs) accounts for both the permeability barrier and desquamation abnormalities in Harlequin ichthyosis (HI). The barrier abnormality provokes the clinical phenotype in these disorders not only by stimulating epidermal proliferation, but also by inducing inflammation.  相似文献   

11.
To evaluate the effects of fatty acids on endoplasmic reticulum (ER) stress, oxidative stress, and lipid damage. We treated BRL3A rat liver cells with, linoleic (LA), linolenic, oleic (OA), palmitic (PA), palmitoleic (POA), or stearic (SA) acid for 12 hr. The characteristics of cell lipid deposition, oxidative stress indexes, ER stress markers, nuclear factor κB p65 (NF-κB p65), lipid synthesis and transport regulators, and cholesterol metabolism regulators were analyzed. Endoplasmic chaperones like glucose-regulated protein 78, CCAAT-enhancer-binding protein, NF-κB p65, hydrogen peroxide, and malonaldehyde in PA- and SA-treated cells were significantly higher than in other treated cells. Deposition of fatty acids especially LA and POA were significantly increased than in other treated cells. De novo lipogenesis regulators sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-coenzyme A carboxylase 1 (ACC1) expression were significantly increased in all fatty acid stimulation groups, and PA- and SA-treated cells showed lower p-ACC1 expression and higher scd1 expression than other fatty acid groups. Very low-density lipoprotein synthesis and apolipoprotein B100 expression in free fatty acids treated cells were significantly lower than control. PA, SA, OA, and POA had shown significantly increased cholesterol synthesis than other treated cells. PA and SA showed the lower synthesis of cytochrome P7A1 and total bile acids than other fatty acids treated cells. Excess of saturated fatty acids led to severe ER and oxidative stress. Excess unsaturated fatty acids led to increased lipid deposition in cultured hepatocytes. A balanced fatty acid intake is needed to maintain lipid homeostasis.  相似文献   

12.
CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects) is a rare X-linked dominant ichthyotic disorder. CHILD syndrome results from loss of function mutations in the NSDHL gene, which leads to inhibition of cholesterol synthesis and accumulation of toxic metabolic intermediates in affected tissues. The CHILD syndrome skin is characterized by plaques topped by waxy scales and a variety of developmental defects in extracutaneous tissues, particularly limb hypoplasia or aplasia. Strikingly, these alterations are commonly segregated to either the right or left side of the body midline with little to no manifestations on the ipsilateral side. By understanding the underlying disease mechanism of CHILD syndrome, a pathogenesis-based therapy has been developed that successfully reverses the CHILD syndrome skin phenotype and has potential applications to the treatment of other ichthyoses. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

13.
The fatty acid compositions of the ether lipid 1(3),2-diacylglyceryl-(3)-O-4′-(N,N,N-trimethyl)homoserine (DGTS) from Ochromonas danica a  相似文献   

14.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

15.
Oxygen free radicals damage cells through peroxidation of membrane lipids. Gastrointestinal mucosal membranes were found to be resistant to in vitro lipid peroxidation as judged by malonaldehyde and conjugated diene production and arachidonic acid depletion. The factor responsible for this in this membrane was isolated and chemically characterised as the nonesterified fatty acids (NEFA), specifically monounsaturated fatty acid, oleic acid. Authentic fatty acids when tested in vitro using liver microsomes showed similar inhibition. The possible mechanism by which NEFA inhibit peroxidation is through iron chelation and iron-fatty acid complex is incapable of inducing peroxidation. Free radicals generated independent of iron was found to induce peroxidaton of mucosal membranes. Gastrointestinal mucosal membranes were found to contain unusually large amount of NEFA. Circulating albumin is known to contain NEFA which was found to inhibit iron induced peroxidation whereas fatty acid free albumin did not have any effect. Addition of individual fatty acids to this albumin restored its inhibitory capacity among which monounsaturated fatty acids were more effective. These studies have shown that iron induced lipid peroxidation damage is prevented by the presence of nonesterified fatty acids.  相似文献   

16.
Cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are traditionally associated with the termination of acetylcholine mediated neural signaling. The fact that these ubiquitous enzymes are also found in tissues not involved in neurotransmission has led to search for alternative functions for these enzymes. Cholinesterases are reported to be involved in many lipid related disease states. Taking into view that lipases and cholinesterases belong to the same enzyme class and by comparing the catalytic sites, we propose a new outlook on the link between BChE and lipid metabolism. The lipogenic substrates of BChE that have recently emerged in contrast to traditional cholinesterase substrates are explained through the hydrolytic capacity of BChE for ghrelin, 4-methyumbelliferyl (4-mu) palmitate, and arachidonoylcholine and through endogenous lipid mediators such as cannabinoids like anandamide and essential fatty acids. The abundance of BChE in brain, intestine, liver, and plasma, tissues with active lipid metabolism, supports the idea that BChE may be involved in lipid hydrolysis. BChE is also regulated by various lipids such as linoleic acid, alpha-linolenic acid or dioctanoylglycerol, whereas AChE is inhibited. The finding that BChE is able to hydrolyze 4-mu palmitate at a pH where lipases are less efficient points to its role as a backup in lipolysis. In diseases such as Alzheimer, in which elevated BChE and impaired lipid levels are observed, the lipolytic activity of BChE might be involved. It is possible to suggest that fatty acids such as 4-mu palmitate, ghrelin, arachidonoylcholine, essential fatty acids, and other related lipid mediators regulate cholinesterases, which could lead to some sort of compensatory mechanism at high lipid concentrations.

  相似文献   


17.
Arbuscular mycorrhizal (AM) fungi are important below-ground carbon (C) sinks that can be sensitive to increased nitrogen (N) availability. The abundance of AM fungi (AMF) was estimated in maple (Acer spp.) fine roots following more than a decade of experimental additions of N designed to simulate chronic atmospheric N deposition. Abundance of AMF was measured by staining and ocular estimation, as well as by analyzing for the AMF indicator fatty acid 16:1omega5c in phospholipid (biomass indicator) and neutral lipid (lipid storage indicator) fractions. Arbuscular mycorrhizal fungal biomass, storage structures and lipid storage declined in response to N addition measured by both methods. This pattern was found when AM response was characterized as colonization intensity, on an areal basis and in proportion to maple above-ground biomass. The phospholipid fraction of the fatty acid 16:1omega5c was positively correlated with total AMF colonization and the neutral lipid fraction with vesicle colonization. Decreased AMF abundance with simulated N deposition suggests reduced C allocation to these fungi or a direct soil N-mediated decline. The fatty acid (phospholipid and neutral lipid fractions) 16:1omega5c was found to be a good indicator for AMF active biomass and stored energy, respectively.  相似文献   

18.
The liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis. Hig2 expression increased in livers of mice on a high-fat diet and during fasting, two states associated with enhanced hepatic TG content. Hig2 expressed in primary mouse hepatocytes localized to LDs and promoted LD TG deposition in the presence of oleate. Conversely, tamoxifen-inducible Hig2 deletion reduced both TG content and LD size in primary hepatocytes from mice harboring floxed alleles of Hig2 and a cre/ERT2 transgene controlled by the ubiquitin C promoter. Hepatic TG was also decreased by liver-specific deletion of Hig2 in mice with floxed Hig2 expressing cre controlled by the albumin promoter. Importantly, we demonstrate that Hig2-deficient hepatocytes exhibit increased TG lipolysis, TG turnover, and fatty acid oxidation as compared with controls. Interestingly, mice with liver-specific Hig2 deletion also display improved glucose tolerance. Taken together, these data indicate that Hig2 plays a major role in promoting lipid sequestration within LDs in mouse hepatocytes through a mechanism that impairs TG degradation.  相似文献   

19.
The lipid organization in the outermost layer of the skin, the stratum corneum, is important for the skin barrier function. The stratum corneum lipids are composed of ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL). In the present study Fourier transform infrared (FTIR) and small-angle X-ray scattering (SAXS) techniques were utilized to evaluate the effect of three C18 fatty acid esterified ω-acylceramides (CER EOS) on the lipid organization of stratum corneum model membranes. FTIR spectra (scissoring and rocking bands) showed as a function of temperature significant line-shape changes for both components assigned to the orthorhombic phase. Second-derivative analyzes revealed a significant decrease in the interchain coupling strength (Δν values) for the samples formed by CER EOS with the linoleate (CER EOS-L) and oleate (CER EOS-O) moiety around 28.5 °C. However, only a gradual decrease in the Δν values was noticed for the mixture formed with CER EOS with the stearate moiety (CER EOS-S) over the whole temperature range. In the absence of CER EOS the decrease started already at 25.5 °C, demonstrating that CER EOS stabilized the orthorhombic lattice. This stabilization was most pronounced for the CER EOS-S. Spectral fittings allowed to evaluate the orientation changes of the skeletal plane within the orthorhombic unit cell (θ values) for a given temperature range. From the best-fit parameters (peak area values), a decrease in the orthorhombic phase contribution to the scissoring band was also monitored as a function of the temperature. SAXS studies showed the coexistence of two lamellar phases with a periodicity of ∼5.5 nm (short periodicity phase, SPP) and ∼12 nm (LPP) in the presence of the CER EOS-L and CER EOS-O. However, no diffraction peaks associated to the LPP were detected for CER EOS-S. While CER EOS-S most efficiently stabilized the orthorhombic phase, CER EOS-L and CER EOS-O promoted the presence of the LPP. Therefore, the presence of all three CER EOS as observed in human stratum corneum may contribute to a proper skin barrier function.  相似文献   

20.
Finishing late-maturing bulls on grass may alter the antioxidant/prooxidant balance leading to beef with higher susceptibility to lipid oxidation and a lower colour stability compared to bulls finished on cereal concentrates. In this context, lipid oxidation and colour stability of beef from late-maturing bulls finished on pasture, with or without concentrate supplements, or indoors on concentrate was assessed. Charolais or Limousin sired bulls (n = 48) were assigned to four production systems: (1) pasture only (P), (2) pasture plus 25% dietary DM intake as barley-based concentrate (PC25), (3) pasture plus 50% dietary DM intake as barley-based concentrate (PC50) or (4) a barley-based concentrate ration (C). Following slaughter and postmortem ageing, M. Longissimus thoracis et lumborum was subjected to simulated retail display (4°C, 1000 lux for 12 h out of 24 h) for 3, 7, 10 and 14 days in modified atmosphere packs (O2 : CO2; 80 : 20). Lipid oxidation was determined using the 2-thiobarbituric acid-reactive substances assay; α-tocopherol was determined by HPLC; fatty acid methyl esters were determined using Gas Chromatography. Using a randomised complete block design, treatment means were compared by either ANOVA or repeated measures ANOVA using the MIXED procedure of SAS. Total polyunsaturated fatty acid (PUFA) concentrations were not affected by treatment, n-3 PUFAs were higher (P < 0.001) and the ratio of n-6 to n-3 PUFAs was lower (P < 0.001) in muscle from P, PC25 and PC50 compared to C. α-Tocopherol concentration was higher in muscle from P compared to PC50 and C bulls (P = 0.001) and decreased (P < 0.001) in all samples by day 14. Lipid oxidation was higher in muscle from C compared to P bulls on day 10 and day 14 of storage (P < 0.01). Finishing on pasture without supplementation did not affect beef colour stability and led to lower lipid oxidation, possibly due to the higher α-tocopherol concentration compared to concentrate finished beef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号