首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Cyclooxygenase 2 and release of prostaglandin E2 are involved in many responses including inflammation and are upregulated during cellular senescence. However, little is known about the role of lipid inflammatory mediators in senescence. Here, we investigated the mechanism by which the COX-2/PGE2 axis induces senescence. Using the NS398 specific inhibitor of COX-2, we provide evidence that reactive oxygen species by-produced by the COX-2 enzymatic activity are negligible in front of the total senescence-associated oxidative stress. We therefore investigated the role of PGE2 by invalidating the PGE2 synthases downstream of COX-2, or the specific PGE2 receptors, or by applying PGE2 or specific agonists or antagonists. We evaluated the effect on senescence by evaluating the senescence-associated proliferation arrest, the percentage of senescence-associated β-galactosidase-positive cells, and the expression of senescent molecular markers such as IL-6 and MCP1. We show that PGE2 acting on its EP specific receptors is able to induce both the onset of senescence and the maintenance of the phenotype. It did so only when the PGE2/lactate transporter activity was enhanced, indicating that PGE2 acts on senescence more via the pool of intracellular EP receptors than via those localized at the cell surface. Treatment with agonists, antagonists and silencing of the EP receptors by siRNA revealed that EP3 was the most involved in transducing the intracrine effects of PGE2. Immunofluorescence experiments confirmed that EP3 was more localized in the cytoplasm than at the cell surface. Taken together, these results suggest that COX-2 contributes to the establishment and maintenance of senescence of normal human fibroblasts via an independent-ROS and a dependent-PGE2/EPs intracrine pathway.  相似文献   

3.
Phospholipase A2 (PLA2) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-β-cyclodextrin. Activation of calcium-independent PLA2 (iPLA2) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p < 0.01), which was blocked by PLA2 inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (< 10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA2 to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA2 may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA2 may provide a therapeutic target for viral infections.  相似文献   

4.
5.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

6.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

7.
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.  相似文献   

8.
The formation and mineralisation of bone are two critical processes in fast-growing Atlantic salmon (Salmo salar). The mechanisms of these processes, however, have not been described in detail. Thus, in vitro systems that allow the study of factors that influence bone formation in farmed Atlantic salmon are highly warranted. We describe here a method by which unspecialised primary cells from salmon white muscle can differentiate to osteoblasts in vitro. We have subsequently used the differentiated cells as a model system to study the effects of two factors that influence bone formation in Atlantic salmon under commercial farming conditions, namely polyunsaturated fatty acids, PUFAs, and temperature. Muscle precursor cells changed their morphology from triangular or spindle-shaped cells to polygonal or cubical cells after 3 weeks in osteogenic medium. In addition, gene expression studies showed that marker genes for osteoblastogenesis; alp, col1a1, osteocalcin, bmp2 and bmp4 increased after 3 weeks of incubation in osteogenic media showing that these cells have differentiated to osteoblasts at this stage. Adding CLA or DHA to the osteoblast media resulted in a reduced PGE2 production and increased expression of osteocalcin. Further, temperature studies showed that differentiating osteoblasts are highly sensitive to increased incubation temperature at early stages of differentiation. Our studies show that unspecialised precursor cells isolated from salmon muscle tissue can be caused to differentiate to osteoblasts in vitro. Furthermore, this model system appears to be suitable for the study of osteoblast biology in vitro.  相似文献   

9.
In previous works, we have shown that L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors (NMDAr), neuronal nitric oxide synthase (nNOS) and cytochrome b5 reductase (Cb5R) co-localize within the same lipid rafts-associated nanodomains in mature cerebellar granule neurons (CGN). In this work, we show that the calcium transport systems of the plasma membrane extruding calcium from the cytosol, plasma membrane calcium pumps (PMCA) and sodium–calcium exchangers (NCX), are also associated with these nanodomains. All these proteins were found to co-immunoprecipitate with caveolin-1 after treatment with 25 mM methyl-β-cyclodextrin, a lipid rafts solubilizing agent. However, the treatment of CGN with methyl-β-cyclodextrin largely attenuated the rise of cytosolic calcium induced by l-glutamate through NMDAr. Fluorescence energy transfer imaging revealed that all of them are present in sub-microdomains of a size smaller than 200 nm, with a peripheral distribution of the calcium extrusion systems PMCA and NCX. Fluorescence microscopy images analysis revealed high calcium dynamic sub-microcompartments near the plasma membrane in fura-2-loaded CGN at short times after addition of l-glutamate. In addition, the close proximity between sources of nitric oxide (nNOS) and superoxide anion (Cb5R) suggests that these nanodomains are involved in the fast and efficient cross-talk between calcium and redox signaling in neurons.  相似文献   

10.
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P1-5) or LPA (LPA1-3); two more distantly related receptors are activated by LPA (LPA4/5); the GPR3/6/12 receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca2+ homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.  相似文献   

11.
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).  相似文献   

12.
Cardiovascular disease is the biggest killer globally and the principal contributing factor to the pathology is atherosclerosis; a chronic, inflammatory disorder characterized by lipid and cholesterol accumulation and the development of fibrotic plaques within the walls of large and medium arteries. Macrophages are fundamental to the immune response directed to the site of inflammation and their normal, protective function is harnessed, detrimentally, in atherosclerosis. Macrophages contribute to plaque development by internalizing native and modified lipoproteins to convert them into cholesterol-rich foam cells. Foam cells not only help to bridge the innate and adaptive immune response to atherosclerosis but also accumulate to create fatty streaks, which help shape the architecture of advanced plaques. Foam cell formation involves the disruption of normal macrophage cholesterol metabolism, which is governed by a homeostatic mechanism that controls the uptake, intracellular metabolism, and efflux of cholesterol. It has emerged over the last 20 years that an array of cytokines, including interferon-γ, transforming growth factor-β1, interleukin-1β, and interleukin-10, are able to manipulate these processes. Foam cell targeting, anti-inflammatory therapies, such as agonists of nuclear receptors and statins, are known to regulate the actions of pro- and anti-atherogenic cytokines indirectly of their primary pharmacological function. A clear understanding of macrophage foam cell biology will hopefully enable novel foam cell targeting therapies to be developed for use in the clinical intervention of atherosclerosis.  相似文献   

13.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

14.
15.
An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., dietary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms underlying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs), that not only constitute their backbone but also provide the membrane with a suitable environment, fluidity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobiology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegenerative processes, represent an essential step to delay the onset of AD and its progression. Also, in this way it may be possible to suggest new preventive or therapeutic options that can beneficially modify the course of this devastating disease.  相似文献   

16.
Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.  相似文献   

17.
Sulfatides, possible antithrombotic factors belonging to sphingoglycolipids, are widely distributed in mammalian tissues and serum. We recently found that the level of serum sulfatides was significantly lower in hemodialysis patients than that in normal subjects, and that the serum level closely correlated to the incidence of cardiovascular disease. These findings suggest a relationship between the level of serum sulfatides and kidney function; however, the molecular mechanism underlying this relationship remains unclear. In the present study, the influence of kidney dysfunction on the metabolism of sulfatides was examined using an established murine model of acute kidney injury, protein-overload nephropathy in mice. Protein-overload treatment caused severe proximal tubular injuries within 4 days, and this treatment obviously decreased both serum and hepatic sulfatide levels. The sphingoid composition of serum sulfatides was very similar to that of hepatic ones at each time point, suggesting that the serum sulfatide level is dependent on the hepatic secretory ability of sulfatides. The treatment also decreased hepatic expression of cerebroside sulfotransferase (CST), a key enzyme in sulfatide metabolism, while it scarcely influenced the expression of the other sulfatide-metabolizing enzymes, including arylsulfatase A, ceramide galactosyltransferase, and galactosylceramidase. Pro-inflammatory responses were not detected in the liver of these mice; however, potential oxidative stress was increased. These results suggest that down-regulation of hepatic CST expression, probably affected by oxidative stress from kidney injury, causes reduction in liver and serum sulfatide levels. This novel mechanism, indicating the crosstalk between kidney injury and specific liver function, may prove useful for helping to understand the situation where human hemodialysis patients have low levels of serum sulfatides.  相似文献   

18.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

19.

Background

Cluster of differentiation 1 (CD1) represents a family of proteins which is involved in lipid-based antigen presentation. Primarily, antigen presenting cells, like B cells, express CD1 proteins. Here, we examined the cell-surface distribution of CD1d, a subtype of CD1 receptors, on B lymphocytes.

Methods

Fluorescence labeling methods, including fluorescence resonance energy transfer (FRET), were employed to investigate plasma membrane features of CD1d receptors.

Results

High FRET efficiency was observed between CD1d and MHC I heavy chain (MHC I-HC), β2-microglobulin (β2m) and MHC II proteins in the plasma membrane. In addition, overexpression of CD1d reduced the expression of MHC II and increased the expression of MHC I-HC and β2m proteins on the cell-surface. Surprisingly, β2m dependent CD1d isoform constituted only ~ 15% of the total membrane CD1d proteins. Treatment of B cells with methyl-β-cyclodextrin (MβCD) / simvastatin caused protein rearrangement; however, FRET demonstrated only minimal effect of these chemicals on the association between CD1d and GM1 ganglioside on cell-surface. Likewise, a modest effect was only observed in a co-culture assay between MβCD/simvastatin treated C1R–CD1d cells and invariant natural killer T cells on measuring secreted cytokines (IFNγ and IL4). Furthermore, CD1d rich regions were highly sensitive to low concentration of Triton X-100. Physical proximity between CD1d, MHC and GM1 molecules was also detected in the plasma membrane.

Conclusions

An intricate relationship between CD1d, MHC, and lipid species was found on the membrane of human B cells.

General significance

Organization of CD1d on the plasma membrane might be critical for its biological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号