首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
CYP4F22 and CYP4F8 are expressed in epidermis, and mutations of CYP4F22 are associated with lamellar ichthyosis. Epoxyalcohols (HEETs) and epoxides (EETs) of 20:4n−6 appear to be important for the water permeability barrier of skin. Our aim was to study the MS/MS spectra and fragmentation of these compounds and to determine whether they were oxidized by CYP4F22 or CYP4F8 expressed in yeast. HEETs were prepared from 15-hydroperoxyeicosatetraenoic acid (15-HPETE), 12-HPETE, and their [2H8]labeled isotopomers, and separated by normal phase-HPLC with MS/MS analysis. CYP4F22 oxygenated 20:4n−6 at C-18, whereas metabolites of HEETs could not be identified. CYP4F8 formed ω3 hydroxy metabolites of HEETs derived from 12R-HPETE with 11,12-epoxy-10-hydroxy configuration, but not HEETs derived from 15S-HPETE. 8,9-EET and 11,12-EET were also subject to ω3 hydroxylation by CYP4F8. We conclude that CYP4F8 and CYP4F22 oxidize 20:4n−6 and that CYP4F8 selectively oxidizes 8,9-EET, 11,12-EET, and 10,11R,12R-HEET at the ω3 position.  相似文献   

4.
Liu X  Wu J  Liu H  Lai G  Zhao Y 《Gene》2012,505(2):352-359
We have previously established a cytochrome P450 4F2 (CYP4F2) transgenic mouse model. The present study elucidated the molecular foundation of hypertension by androgen-induction in this model. The renal expression of CYP4F2 in transgenic mice was highly expressed and strongly induced with 5α-dihydrotestosterone (DHT) treatment determined by Western blot. DHT also increased the renal arachidonic acid ω-hydroxylation and urinary 20-hydroxyeicosatetraenoic acid (20-HETE) excretion (P<0.01), and furthermore elevated the systolic blood pressure by 10 and 22 mm Hg (P<0.05) in female and castrated male transgenic mice, respectively. HET0016 completely eliminated the androgen-induced effects (P<0.01). Endogenous Cyp4a ω-hydroxylases, evaluated by real-time quantitative PCR, were significantly suppressed in transgenic mice (P<0.05). Importantly, transgenic mice with increased 20-HETE showed decreased epoxyeicosatrienoic acids (EETs) and increased dihydroxyeicosatetraenoic acids determined by liquid chromatography-tandem mass spectrometry, contributing to significantly raised ratio of 20-HETE/EETs in the urine and kidney homogenate (P<0.01). These data demonstrate that the androgen aggravated hypertension possibly through an altered ratio of 20-HETE/EETs in CYP4F2 transgenic mice.  相似文献   

5.
《Free radical research》2013,47(10):1230-1237
Abstract

The significance of 5-lipoxygenase and myeloperoxidase activities has not been extensively studied among young male smokers. Leukotriene B4, 20-hydroxy-leukotriene B4, 20-carboxy-leukotriene B4 and 3-chlorotyrosine were measured in plasma and urinary samples of young male smokers at 8 hours following cigarette abstinence and an hour after cigarette smoking. Leukotriene B4 and 3-chlorotyrosine were determined in neutrophils isolated from these individuals. The levels of these markers were compared with those of age-matched controls. In vitro studies were performed to evaluate the production of leukotriene B4 and 3-chlorotyrosine from human neutrophils following exposure to nicotine and cotinine. Thirty male smokers (mean age, 27.4 years) and 28 male non-smokers (mean age, 28.7 years) were studied. Plasma levels of leukotriene B4, 20-carboxy-leukotriene B4 and 3-chlorotyrosine were higher in smokers than in non-smokers; leukotriene B4 and 20-carboxy-leukotriene B4 levels increased further an hour after cigarette smoking. Peripheral neutrophils isolated from smokers showed greater expressions of myeloperoxidase and 5-lipoxygenase activities compared with non-smokers, while plasma leukotriene B4 and 3-chlorotyrosine were correlated significantly with high-sensitivity C-reactive protein and plasma nicotine concentrations. Exposure of human neutrophils to nicotine and cotinine resulted in a higher production of leukotriene B4 and 3-chlorotyrosine. To conclude, leukotriene B4 and 3-chlorotyrosine levels are increased in young male cigarette smokers. These results suggest that cigarette smoking aggravates neutrophil-mediated inflammation by modulating the activities of myeloperoxidase and 5-lipoxygenase pathways.  相似文献   

6.
Preincubation of rabbit neutrophils with the synthetic chemotactic factor f-Met-Leu-Phe has been found to diminish the ability of these cells to mobilize calcium upon subsequent stimulation by f-Met-Leu-Phe or by leukotriene B4. The preexposure of the neutrophils to leukotriene B4 on the other hand results in a diminished subsequent response to itself but an unaltered response to f-Met-Leu-Phe. These results demonstrate that deactivation can be observed at the level of calcium mobilization, strengthen the postulated second messenger role of calcium in neutrophils and imply that neutrophil activation by chemotactic factors can bypass the arachidonic acid metabolic pathway.  相似文献   

7.
《Free radical research》2013,47(3-6):335-339
Upon activation, human neutrophils generate 5-lipoxygenase products which are involved in inflammation as well as other physiological and pathophysiological processes. We have examined the influence of red cells on the generation of lipoxygenase-derived products by neutrophils utilizing high pressure liquid chromato-graphy system which permitted quantitation of SHETE, leukotriene B4 (and its isomers) and the omega oxidation products of leukotriene B4 (20-hydroxyleukotriene B4, 20-carboxyleukotriene B4) within the same sample. Co-incubation of red cells with neutrophils (50:1, red cells:neutrophils) resulted in a 722 percent increase in 5-hydroxyeicosatetraenoic acid production and a slight increase in leukotriene B4 and its omega oxidation products which were not accompanied by increases in 15-hydroxyeicosatetraenoic acid production. The role of the sulfhydryl status of the red cell and its ability to scavenge hydrogen peroxide were assessed in relationship to the interaction of red cells on the neutrophil-derived lipoxygenase products. Together, these findings indicate that red cells can regulate the levels of lipid-derived mediators produced by neutrophils. Moreover, they suggest that red cell-neutrophil interactions may be of importance in inflammatory reactions.  相似文献   

8.
Cytochrome p450 (CYP) 4Fs metabolize leukotriene B(4) and other inflammatory mediators in the arachidonic acid cascade. Here we show that lipopolysaccharide (LPS) treatment suppresses CYP4F4 and up-regulates CYP4F5 mRNA expression in rat liver whereas renal CYP4Fs are essentially unchanged. BaSO(4) treatment, in contrast, increases both hepatic and renal CYP4F expression levels. Thus, distinct regulatory mechanisms in CYP4F expression might operate under different inflammatory prompts. To examine hepatic totipotency, primary hepatocytes were treated with varying doses of LPS resulting in decrease in all the CYP4F isoforms. Treatment of hepatocytes with 5 ng/ml of interleukin-1beta mimics the in vivo effects of LPS on CYP4F expression.  相似文献   

9.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

10.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2′,5′-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

11.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and apparent Km for leukotriene A4 between 2 · 10?5 and 3 · 10?5 M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

12.
Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450-4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14(-/-) mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12'-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14(-/-) mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo.  相似文献   

13.
The metabolism of leukotriene B4 (5(S),12(R)-dihydroxy-6-cis-8,10-trans-14-cis-eicosatetraenoic acid) by isolated guinea pig eosinophils was investigated. Incubation of guinea pig eosinophils with [3H]-leukotriene B4 resulted in the rapid conversion of leukotriene B4 to several more polar metabolites. Two of these metabolites were identified by ultraviolet spectroscopy and gas chromatography-mass spectrometry as the omega oxidation products 5(S),12(R),20-trihydroxy-6,8,10,14-eicosatetraenoic acid (20-hydroxy-leukotriene B4) and 5(S),12(R),19-trihydroxy-6,8,10,14-eicosatetraenoic acid (19-hydroxy-leukotriene B4). Two novel metabolites, 5(S),12(R),18,19-tetrahydroxy-6,8,10,14 eicosatetraenoic acid (18,19-dihydroxy-leukotriene B4) and 5(S),12(R)-dihydroxy-1,18-dicarboxylic-6,8,10,14,16-octadecapentaenoic acid (Δ16,17–18-carboxy-19,20-dinor-leukotriene B4) were tentatively identified. The identification of these compounds indicates that guinea pig eosinophils are capable of metabolizing leukotriene B4 by both omega and beta oxidation. This catabolic activity may play a role in modulating inflammatory reactions by removing the chemoattractant leukotriene B4 from inflammatory sites.  相似文献   

14.
Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver and metabolizes approximately 50% of the drugs, including antiretrovirals. Although CYP3A4 induction by ethanol and impact of CYP3A4 on drug metabolism and toxicity is known, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known. Therefore, we studied the effect of ethanol on binding and inhibition of CYP3A4 with a representative protease inhibitor, nelfinavir, followed by the effect of alcohol on nelfinavir metabolism. Our initial results showed that methanol, ethanol, isopropanol, isobutanol, and isoamyl alcohol bind in the active site of CYP3A4 and exhibit type I spectra. Among these alcohol compounds, ethanol showed the lowest KD (5.9 ± 0.34 mM), suggesting its strong binding affinity with CYP3A4. Ethanol (20 mM) decreased the KD of nelfinavir by >5-fold (0.041 ± 0.007 vs. 0.227 ± 0.038 μM). Similarly, 20 mM ethanol decreased the IC50 of nelfinavir by >3-fold (2.6 ± 0.5 vs. 8.3 ± 3.1 μM). These results suggest that ethanol facilitates binding of nelfinavir with CYP3A4. Furthermore, we performed nelfinavir metabolism using LCMS. Although ethanol did not alter kcat, it decreased the Km of nelfinavir, suggesting a decrease in catalytic efficiency (kcat/Km). This is an important finding because alcoholism is prevalent in HIV-1-infected persons and alcohol is shown to decrease the response to antiretroviral therapy.  相似文献   

15.
Incubation of peripheral blood leukocytes with arachidonic acid (and ionophore A23187) led to the formation of leukotriene B4, Δ6-trans-leukotriene B4, Δ6-trans-12-epi-leukotriene B4, 5-hydroxy-icosatetraenoic acid, 12-hydroxy-icosatetraenoic acid and of 5S,12S-dihydroxy-6,8,10,14-(E,Z,E,Z)-icosatetraenoic acid (5S,12S-DiHETE). Incubation of leukocytes with leukotriene A4 resulted in the formation of leukotriene B4 and of its two Δ6-trans-isomers but not of the 5S,12S-DiHETE. 18O2 labeling experiments have shown that the hydroxyl groups at C5 and C12 in the 5S,12S-DiHETE are derived from molecular oxygen. The tetraacetylenic analog of arachidonic acid was found to be a potent inhibitor of the formation of the 5S,12S-DiHETE whereas it potentiated the synthesis of the 5-hydroxy acid and of leukotriene B4. Addition of the 12-hydroxy-icosatetraenoic acid to leukocytes, or of the 5-hydroxy-icosatetraenoic acid to a suspension of platelets caused the formation of the 5S,12S-DiHETE. It is concluded that the 5S,12S-DiHETE is not derived from leukotriene A4 but is a product of the successive reactions of arachidonic acid with two lipoxygenases of different positional specificities.  相似文献   

16.
17.
Leukotriene C4 synthase is a key enzyme in leukotriene biosynthesis. Its gene has been cloned and mapped to mouse chromosome 11. Expression occurs in cells of myeloid origin and also in the choroid plexus, the hypothalamus and the medial eminence of mouse brain. In this study a vector that expresses enhanced green fluorescent protein (eGFP) under the control of the mouse leukotriene C4 synthase promoter was constructed and used to study promoter activity in different cell lines. Specific eGFP expression was observed in human monocytic leukemia (THP-1) and rat basophilic leukemia (RBL-1) myeloid cells which both express leukotriene C4 synthase, but not in human embryonic kidney (HEK293/T) epithelial cells which do not express this enzyme. In the myeloid cells, but not in the epithelial cells, we observed that the leukotriene C4 synthase promoter activity was stimulated by 12-O-tetradecanoylphorbol-13-acetate and all-trans-retinoic acid. In contrast dimethyl sulfoxide did not affect promoter activity.  相似文献   

18.
Leukotriene B(4) (LTB(4)) is a lipid mediator that plays an important role in inflammation. Metabolism of LTB(4) by cytochrome P450 (CYP) enzymes belonging to the CYP4F subfamily is considered to be of importance for the regulation of inflammation. This study investigates LTB(4) metabolism by recombinant rat CYP4F5 and CYP4F6 expressed in a yeast system and by microsomes isolated from rat organs expressing CYP4F mRNA. CYP4F6 was found to convert LTB(4) into 19-hydoxy- and 18-hydroxy-LTB(4) with an apparent K(m) of 26 microM, and CYP4F5 was found to convert LTB(4) primarily into 18-hydroxy-LTB(4) with an apparent K(m) of 9.7 microM. The rate of formation of 18-hydroxy-LTB(4) by CYP4F5 was surprisingly high. At a substrate concentration of 30 microM, the rate of formation was about 15 nmol/min/mg microsomal protein, approximately 30 times faster than the reaction catalyzed by CYP4F6. Analysis of LTB(4) metabolism by microsomes isolated from various tissues from the rat suggests that CYP4F5 and CYP4F6 are active in the lung and to some extent in the brain, kidney, and testis. CYP4F5 and CYP4F6, due to their capacities to metabolize LTB(4), may play important roles in modulating inflammatory response in these organs.  相似文献   

19.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Ecdysteroids are steroid hormones, which coordinate major developmental transitions in insects. Both the rises and falls in circulating levels of active hormones are important for coordinating molting and metamorphosis, making both ecdysteroid biosynthesis and inactivation of physiological relevance. We demonstrate that Drosophila melanogaster Cyp18a1 encodes a cytochrome P450 enzyme (CYP) with 26-hydroxylase activity, a prominent step in ecdysteroid catabolism. A clear ortholog of Cyp18a1 exists in most insects and crustaceans. When Cyp18a1 is transfected in Drosophila S2 cells, extensive conversion of 20-hydroxyecdysone (20E) into 20-hydroxyecdysonoic acid is observed. This is a multi-step process, which involves the formation of 20,26-dihydroxyecdysone as an intermediate. In Drosophila larvae, Cyp18a1 is expressed in many target tissues of 20E. We examined the consequences of Cyp18a1 inactivation on Drosophila development. Null alleles generated by excision of a P element and RNAi knockdown of Cyp18a1 both result in pupal lethality, possibly as a consequence of impaired ecdysteroid degradation. Our data suggest that the inactivation of 20E is essential for proper development and that CYP18A1 is a key enzyme in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号