首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process. Our study showed that endoplasmic reticulum (ER) stress and autophagy are involved in PA-induced Saos-2 cell apoptosis. We found that PA inhibited the viability of Saos-2 cells in a dose- and time-dependent manner. At the same time, PA induced the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)), altered autophagy-related gene expression (microtubule-associated protein 1 light chain 3 (LC3), ATG5, p62, and Beclin), promoted apoptosis-related gene expression (Caspase 3 and BAX), and affected autophagic flux. Inhibiting ER stress with 4-PBA diminished the PA-induced cell apoptosis, activated autophagy, and increased the expression of Caspase 3 and BAX. Inhibiting autophagy with 3-MA attenuated the PA and ER stress-induced cell apoptosis and the apoptosis-related gene expression (Caspase 3 and BAX), but seemed to have no obvious effects on ER stress, although the CHOP expression was downregulated. Taken together, our results suggest that PA-induced Saos-2 cell apoptosis is activated via ER stress and autophagy, and the activation of autophagy depends on the ER stress during this process.  相似文献   

2.
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells.  相似文献   

3.
An anti-tumor peptide from Musca domestica pupae (MATP) inhibited proliferation of human liver cancer cells HepG2 in a dose-dependent manner. The results of morphology observation indicated that MATP inducing HepG2 cells apoptosis based on the typical apoptotic morphological changes. Flow cytometric analysis demonstrated that MATP caused apoptosis of HepG2 cells through cells arrested at S phase (from 14.26 to 54.38 %) and the apoptotic rates significantly increased (from 1.34 to 25.20 %). The laser scanning confocal microscopy results showed that the generation of intracellular reactive oxygen species (ROS) was increased and the Western blot results revealed that ROS induced a sustained activation of phosphorylated-JNK. Simultaneously, the apoptosis induced by MATP was reversed by NAC (ROS inhibitor) and SP600125 (JNK inhibitor). These results proved that ROS/JNK participated in apoptosis of HepG2 treated with MATP. Moreover, Bax-to-Bcl-2 expression ratio was increased by the activation of phosphorylated-JNK. The release of Cytochrome c from mitochondria which arose the Caspases cascade enhanced by the increase of Bax-to-Bcl-2 expression ratio and intensified the expression of Caspase-9 and Caspase-3. Taken together, these findings suggest that the MATP induces apoptosis through a ROS/JNK-mediated Caspase pathway.  相似文献   

4.
Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.  相似文献   

5.
Delphinidin is an anthocyanidin commonly found in various fruits and vegetables. Delphinidin has been known to possess many functions, such as an antioxidant, and anti-inflammatory, anti-cancer and anti-muscular atrophy agent. In this study, we attempted to evaluate the effects of delphinidin on lipid accumulation in hepatocytes. The results showed that palmitic acid (PA)-induced cellular senescence in HepG2 cells and reduced the expression of SMARCD1, which is known to regulate senescence-associated lipid accumulation in hepatocytes. However, delphinidin-3-glucoside (D3 g) suppressed PA-induced senescence and reversed the expression of SMARCD1 to the level of untreated HepG2 cells. Consequently, D3 g inhibited PA-induced lipid accumulation through the restoration of the expression of SMARCD1 and fatty acid oxidation genes. Taken together, our results suggest that D3 g suppresses the lipid accumulation induced by hepatocyte senescence.  相似文献   

6.
To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.  相似文献   

7.
Ethanol and polyunsaturated fatty acids such as arachidonic acid were shown to be toxic and cause apoptosis in HepG2 cells which express CYP2E1 but not in control HepG2 cell lines. The goal of the current study was to extend the observations made with the HepG2 cells to non-transformed, intact hepatocytes. Rats were treated with pyrazole to increase CYP2E1 levels, hepatocytes were isolated and placed into culture and treated for varying time points with ethanol or arachidonic acid. Comparisons were made to hepatocytes from saline-treated rats, with low CYP2E1 content. Incubation with ethanol (100 mM) or especially arachidonic acid (60 µM) resulted in loss of viability of hepatocytes from the pyrazole-treated rats, without any effect on the hepatocytes from the saline-treated rats. The toxicity appeared to be apoptotic in nature and was prevented by diallyldisulfide, an inhibitor of CYP2E1. Toxicity was reduced by trolox, an antioxidant. The treatment with ethanol or arachidonic acid resulted in release of cytochrome c into the cytosol fraction, and activation of caspase 3 (but not caspase 1) in hepatocytes from the pyrazole-treated rats but not hepatocytes from the saline-treated rats. The activation of caspase 3 was prevented by diallyldisulfide, by trolox, and by DEVD-fmk. The latter also prevented the toxicity produced by ethanol or arachidonic acid. These results extend previous observations found with HepG2 cells expressing CYP2E1 to intact hepatocytes and suggest that release of cytochrome c and activation of caspase 3 play a role in the overall pathway by which CYP2E1 contributes towards the hepatotoxic actions of ethanol and polyunsaturated fatty acids  相似文献   

8.
PTP-S2/TC45 is a nuclear protein tyrosine phosphatase that activates p53 and induces caspase 1-dependent apoptosis. We analyzed the role of ICE protease-activating factor (Ipaf), an activator of caspase 1 in p53-dependent apoptosis. We also determined the sequence of events that lead to apoptosis upon caspase 1 activation by Ipaf. PTP-S2 expression induced Ipaf mRNA in MCF-7 cells which was dependent on p53. PTP-S2-induced apoptosis was inhibited by a dominant-negative mutant of Ipaf and also by an Ipaf-directed short-hairpin RNA. Doxorubicin-induced apoptosis was potentiated by the expression of caspase 1 (but not by a catalytic mutant of caspase 1) and required endogenous Ipaf. Doxorubicin treatment of MCF-7 cells resulted in activation of exogenous caspase 1, which was partly dependent on endogenous Ipaf. An activated form of Ipaf induced caspase 1-dependent apoptosis that was inhibited by Bcl2 and also by a dominant inhibitor of caspase 9 (caspase 9s). Caspase 1-dependent apoptosis induced by doxorubicin was also inhibited by Bcl2 and caspase 9s, but caspase 1 activation by activated Ipaf was not inhibited by Bcl2. Mitochondrial membrane permeabilization was induced by caspase 1 and activated Ipaf, which was inhibited by Bcl2, but not by caspase 9s. Expression of caspase 1 with activated Ipaf resulted in the activation of Bax at mitochondria. Our results suggest that Ipaf is involved in PTP-S2-induced apoptosis and that caspase 1, when activated by Ipaf, causes release of mitochondrial proteins (cytochrome c and Omi) through Bax activation, thereby functioning as an initiator caspase.  相似文献   

9.
A purified microbial capsular polysaccharide of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces Fas ligand (FasL) upregulation on macrophages and, as a consequence, apoptosis of lymphocytes. The mechanisms that lead to lymphocyte apoptosis in both in vitro and in vivo systems were investigated by cytofluorimetric analysis and Western blotting experiments. Caspase 8 cleaves caspase 3 in two different pathways: directly as well as indirectly by activation of Bcl-2 interacting domain, which initiates caspase 9 cleavage. Therefore, the caspase 8 and caspase 9 pathways cooperate in an amplification loop for efficient cell death, and noteworthily we provide evidence that they are both activated in one single cell. Furthermore, both activation of GXM-mediated caspase 8 and apoptosis were also found in in vivo systems in an experimental model of murine candidiasis. Collectively, our data show that GXM-induced apoptosis involves, in a single cell, a cross-talk between extrinsic and intrinsic pathways. Such a finding offers opportunities for the therapeutic usage of this polysaccharide in appropriate clinical settings for taming T-cell responses.  相似文献   

10.
目的:利用CRISPR/Cas9基因编辑技术构建生物节律基因NPAS2敲除的HepG2肝癌细胞系,并初步探讨NPAS2基因敲除对肝癌细胞凋亡的影响。方法:利用sgRNA在线设计工具,针对NPAS2设计两条sgRNA;利用PX459质粒构建分别含有两条sgRNA的敲除载体PX459-sgRNA1;PX459-sgRNA2;利用T7核酸内切酶I检测两条sgRNA活性;将活性较高的打靶载体瞬时转染HepG2细胞,经过药物筛选,克隆化培养及基因测序后得到NPAS2敲除的HepG2肝癌细胞系;利用Western blot检测NPAS2蛋白的表达和凋亡相关蛋白Caspase3的活化;利用流式细胞仪检测敲除细胞系的凋亡水平。结果:成功构建了针对NPAS2的打靶载体;并筛选得到了活性较高的打靶载体;经过药物筛选和克隆化培养得到的NPAS2敲除肝癌细胞系未检测到NPAS2蛋白的表达;进一步发现NPAS2敲除的肝癌细胞Caspase3明显活化,凋亡水平显著升高。结论:利用CRISPR/Cas9基因编辑技术成功构建了NPAS2基因敲除的HepG2肝癌细胞系,并发现NPAS2敲除可以促进肝癌细胞凋亡,为进一步研究生物节律基因NPAS2及其它相关基因在肝癌发生发展中的作用机制提供了有力的工具。  相似文献   

11.
Virulent Klebasiella pneumoniae (KP) inflicts severe liver abscesses in infected patients. This study investigated how the bacterial infection affected cell survival at the molecular level, in a cultured cell model. A strain of KP highly virulent in mice was isolated from a patient with liver abscess, and was used to infect HepG2 cells. The infected cells were examined for their viability, DNA fragmentation, and proteins involved in apoptosis or necrosis. We found that the infection decreased the viability of HepG2 cells at 4 hours (h) to 12 h post infection (pi). DNA ladders appeared 6–16 h pi and flow cytometry analysis showed apoptosis at 3–5 h pi, secondary necrosis at 6–9 h pi and primary necrosis at 8–9 h pi. Cleavages of Caspase 7, Caspase 9, α-Fodrin, and PARP were evident at 2–4 h pi. At 7 h pi, we observed the following: increased nuclear AIF, the release from mitochondria of cytosolic Apaf-1 and Cyt c, increased DFF40 expression, decreased DFF45, decreased BcL-xL and the release of Endo G from mitochondria to nucleus. Cellular ATP concentration decreased at 4–8 h pi, accompanied by increased Calpain-2 expression. In summary, infected HepG2 cells underwent apoptosis early after infection and progressed to secondary necrosis and primary necrosis. Nuclear fragmentation corresponded to Caspase 7 activation and the appearance of Endo G and DFF40 in the nucleus, with a concomitant decrease in DFF45. Mitochondrial release of Cyt c together with activation of Caspase 9 and Apaf-1 in cytosol was also observed. Early-hour cleavage of poly(ATP-ribose) polymerase (PARP) followed by the later activation of PARP corresponded to the appearance of DNA laddering, and the depletion of cellular ATP was associated with the appearance of necrosis.  相似文献   

12.
We previously demonstrated that intestinal epithelial cell apoptosis in weaned piglets is much more serious than that observed in sucking piglets and is related to oxidative stress during weaning. It is difficult to study the apoptosis mechanisms only using in vivo methods because of the limit of existing research technology. An in vitro cellular system is required for piglet intestinal epithelial cell apoptosis research. In this study, a non-tumorigenic epithelial cell line, IPEC-J2 cells, was employed as a cell model. Hydrogen peroxide and xanthine/xanthine oxidase (X/XO) were both used and compared for apoptosis modeling. The concentrations of hydrogen peroxide and XO were selected and verified using cell viability analysis, the comet assay and flow cytometry. Intracellular ROS were measured using fluorescent probes. Additionally, the expression levels of the apoptosis-related genes Fas, Bcl-2, P53, Caspase 3, Caspase 8, and Caspase 9 were analyzed using quantitative RT-PCR. The results indicated the optimal modeling method is a final concentration of 0.5 mM H2O2 incubated with IPEC-J2 cells for 1 h at 37 °C in 5 % CO2 for hydrogen peroxide-induced apoptosis modeling, and a final concentration of 250 μM X/50 U/L XO incubated with IPEC-J2 cells for 6 h at 37 °C in 5 % CO2 for X/XO-induced apoptosis modeling. For the apoptotic pathway, the X/XO modeling method is more similar to 21 days weaning piglets. Therefore, we suggest that X/XO modeling with IPEC-J2 cells be used as an in vitro cell culture model for weaning piglet intestinal epithelial cell apoptosis.  相似文献   

13.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

14.
1,4-Dihydropyridines (1,4-DHPs) are important as a class of heterocyclic compounds that exhibit wide range of biological actions. Many of its derivatives are already characterized as medicinally important drugs and used worldwide. In this study, we have screened some novel Hantzsch 1,4-DHP compounds using both in silico (QSAR and Pharmacophore) and in vitro (cytotoxic screening). 1,4-DHP showed selective cytotoxicity against five human cancerous cell lines; A375, A549, HeLa, HepG2 and SH-SY5Y but limited effect towards normal skin keratinocyte (HaCaT), lung fibroblast (WL-38) and healthy peripheral blood mononuclear cells. In A375 and HepG2 cells, one of the 1,4-DHP derivative (DHP-8) was found to inhibit cell proliferation, and simultaneously increased the apoptotic population as well as mitochondrial membrane depolarization. Furthermore, the mitochondrial signal was triggered with the activation of cleaved Caspase9, Caspase3 and PARP. The treatment with DHP-8 also increased the expression level of SIRT1, subsequently decreasing the level of pAKTser473 and survivin. Reduced pAKTser473 expression led to decrease the phosphorylated inactive form of GSK3βser9 and as a result, proteasomal degradation of Mcl-1 occurred in both the cell lines. Here, we suggest that the apoptotic effect of DHP-8 in A375 and HepG2 cells was mediated by AKT and survivin pathways through SIRT1 activation. The involvement of DHP-8 in SIRT1 activation was further verified by co-treatment of nicotinamide with DHP-8 in both A375 and HepG2 cells. Overall, this study emphasizes the possible potential and therapeutic role of DHP-8 in skin and liver cancer.  相似文献   

15.
Purpose: To observe the apoptotic effects of NSMF on human hepatoma cells and to investigate the mechanisms. Materials and methods: Human hepatoma cell line Bel-7402 and Hep G-2 were treated by 0.2?T rotary NSMF (30?min/d) with 250?Hz, 400?Hz and 500?Hz for 3?d and 6?d, respectively. Apoptosis was analyzed with flow cytometry. Cell proliferation was measured with XTT assay. Expression of Bcl-2, caspase3/8/9 was analyzed with ELISA. Results: After 6?d treatment, significant apoptosis was induced by 400?Hz in Bel-7402 cells. Slight cell apoptosis was observed at 250?Hz, while Hep G-2 cells exhibited slight apoptosis at 250?Hz and 400?Hz. After 3?d treatment, no apoptosis exhibited in both cell types. Compared with control group, expression of Bcl-2 and Caspase 8 in treated Bel-7402 cells were significantly reduced (p?p?Conclusions: NSMF upregulates caspase 9 and downregulates Bel-2 expression, which results in higher level of active caspase 3 to trigger apoptosis in cells. Different cell types require different NSMF factors like rotary frequency and treatment time to induce apoptosis.  相似文献   

16.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.  相似文献   

17.
Phosphoinositides such as phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate promote cell survival and protect against apoptosis by activating Akt/PKB, which phosphorylates components of the apoptotic machinery. We now report that another phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2) is a direct inhibitor of initiator caspases 8 and 9, and their common effector caspase 3. PIP2 inhibited procaspase 9 processing in cell extracts and in a reconstituted procaspase 9/Apaf1 apoptosome system. It inhibited purified caspase 3 and 8 activity, at physiologically attainable PIP2 levels in mixed lipid vesicles. Caspase 3 binding to PIP2 was confirmed by cosedimentation with mixed lipid vesicles. Overexpression of phosphatidylinositol phosphate 5-kinase alpha (PIP5KIalpha), which synthesizes PIP2, suppressed apoptosis, whereas a kinase-deficient mutant did not. Protection by the wild-type PIP5KIalpha was accompanied by decreases in the generation of activated caspases and of caspase 3-cleaved PARP. Protection was not mediated through PIP3 or Akt activation. An anti-apoptotic role for PIP(2) is further substantiated by our finding that PIP5KIalpha was cleaved by caspase 3 during apoptosis, and cleavage inactivated PIP5KIalpha in vitro. Mutation of the P(4) position (D279A) of the PIP5KIalpha caspase 3 cleavage consensus prevented cleavage in vitro, and during apoptosis in vivo. Significantly, the caspase 3-resistant PIP5KIalpha mutant was more effective in suppressing apoptosis than the wild-type kinase. These results show that PIP2 is a direct regulator of apical and effector caspases in the death receptor and mitochondrial pathways, and that PIP5KIalpha inactivation contributes to the progression of apoptosis. This novel feedforward amplification mechanism for maintaining the balance between life and death of a cell works through phosphoinositide regulation of caspases and caspase regulation of phosphoinositide synthesis.  相似文献   

18.
Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in a variety of human cancer cells. However, the regulation of survivin and Bcl‐2 on the quercetin‐induced cell‐growth inhibition and apoptosis in cancer cells remains unclear. In the present study, we report that quercetin can inhibit proliferation and induce apoptosis in HepG2 cells in dose‐ and time‐dependent manner. Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) staining showed that HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin. Cell‐cycle analysis reveals a significant increase of the proportion of cells in G0/G1 phase. We also demonstrate that the levels of survivin and Bcl‐2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin by immunocytochemistry analysis. Relative activity of caspase‐3 and caspase‐9 increased significantly. These data clearly indicate that quercetin‐induced apoptosis is associated with caspase activation, and the levels of survivin and Bcl‐2. Our results indicate that the expression of survivin may be associated with Bcl‐2 expression, and the inhibition expression of survivin, in conjunction with Bcl‐2, might cause more pronounced apoptotic effects. Together, concurrent down‐regulated survivin and Bcl‐2 play an important role in HepG2 cell apoptosis induced by quercetin.  相似文献   

19.
In order to examine the effects of trans-unsaturated fatty acids (TFAs) on HepG2 cells, cells were grown in serum-free media supplemented with elaidic acid (t18:1); t18:1 is the trans-isomer of oleic acid and is the major component of TFAs in foods. Both t18:1 and palmitic acids (16:0) at concentrations higher than 100 microM inhibited growth and decreased the rate of protein synthesis. The presence of phosphatidylserine in the outer leaflet of the lipid bilayer, indicative of apoptosis, occurred 1 h after the addition of both t18:1 and 16:0 to the media. Caspase 3 was found to be activated by these fatty acids: caspase 8 was activated by 16:0 and only moderately by t18:1. Activation of caspase 3 by these fatty acids was fully inhibited by a caspase 8 inhibitor. However, growth inhibition by t18:1 was partially prevented by the caspase 8 inhibitor. These results suggest that cell death caused by t18:1 may proceed by both caspase-dependent and -independent pathways.  相似文献   

20.
Macrophage apoptosis is an important component of the innate immune defense machinery (against pathogenic mycobacteria) responsible for limiting bacillary viability. However, little is known about the mechanism of how apoptosis is executed in mycobacteria-infected macrophages. Apoptosis signal-regulating kinase 1 (ASK1) was activated in Mycobacterium avium-treated macrophages and in turn activated p38 mitogen-activated protein (MAP) kinase. M. avium-induced macrophage cell death could be blocked in cells transfected with a catalytically inactive mutant of ASK1 or with dominant negative p38 MAP kinase arguing in favor of a central role of ASK1/p38 MAP kinase signaling in apoptosis of macrophages challenged with M. avium. ASK1/p38 MAP kinase signaling was linked to the activation of caspase 8. At the same time, M. avium triggered caspase 8 activation, and cell death occurred in a Fas-associated death domain (FADD)-dependent manner. The death signal induced upon caspase 8 activation linked to mitochondrial death signaling through the formation of truncated Bid (t-Bid), its translocation to the mitochondria and release of cytochrome c. Caspase 8 inhibitor (z-IETD-FMK) could block the release of cytochrome c as well as the activation of caspases 9 and 3. The final steps of apoptosis probably involved caspases 9 and 3, since inhibitors of both caspases could block cell death. Of foremost interest in the present study was the finding that ASK1/p38 signaling was essential for caspase 8 activation linked to M. avium-induced death signaling. This work provides the first elucidation of a signaling pathway in which ASK1 plays a central role in innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号