首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

2.
Many membrane proteins are integrated into the endoplasmic reticulum membrane through the protein-conducting channel, the translocon. Transmembrane segments with insufficient hydrophobicity for membrane integration are frequently found in multispanning membrane proteins, and such marginally hydrophobic (mH) segments should be accommodated, at least transiently, at the membrane. Here we investigated how mH-segments stall at the membrane and their stability. Our findings show that mH-segments can be retained at the membrane without moving into the lipid phase and that such segments flank Sec61α, the core channel of the translocon, in the translational intermediate state. The mH-segments are gradually transferred from the Sec61 channel to the lipid environment in a hydrophobicity-dependent manner, and this lateral movement may be affected by the ribosome. In addition, stalling mH-segments allow for insertion of the following transmembrane segment, forming an Ncytosol/Clumen orientation, suggesting that mH-segments can move laterally to accommodate the next transmembrane segment. These findings suggest that mH-segments may be accommodated at the ER membrane with lateral fluctuation between the Sec61 channel and the lipid phase.  相似文献   

3.
beta-Amyloid (Aβ) is the primary protein component of senile plaques in Alzheimer's disease (AD) and is believed to play a role in its pathology. To date, the mechanism of action of Aβ in AD is unclear. We and others have observed that Aβ interacts either with or in the vicinity of the α6 sub-unit of integrin, and believe this may be important in its interaction with neuronal cells. In this study, we used confocal microscopy and flow cytometry to explore the residue specific interactions of Aβ40 with the cell surface and the α6 integrin receptor sub-unit. We probed the importance of the RHD sequence in Aβ40 and found that removal of the residues or their mutation using the Aβ8-40 or the D7N early onset AD sequence, respectively, led to a greater interaction between Aβ40 and an antibody bound to the α6-integrin sub-unit, as measured by fluorescence resonance energy transfer (FRET). These results suggest that the RHD sequence of Aβ40 does not mediate Aβ–α6 integrin interactions. However, the cyclic RGD mimicking peptide, Cilengitide, reduced the measured interaction between Aβ40 fibrils without the RHD sequence and an antibody bound to the α6-integrin sub-unit. We further probed the role of electrostatic forces on Aβ40–cell interactions and observed that the Aβ sequence that included the N-terminal segment of the peptide had reduced cellular binding at low salt concentrations, suggesting that its first 7 residues contribute to an electrostatic repulsion for the cell surface. These findings contribute to our understanding of Aβ–cell surface interactions and may provide insight into development of novel strategies to block Aβ–cell interactions that contribute to pathology in Alzheimer's disease.  相似文献   

4.
The endoplasmic reticulum is a heterogeneous compartment with respect to the distribution of its Ca2+-handling proteins, namely the Ca2+-binding proteins, the Ca2+ pumps and the Ca2+ release channels. The nonuniform distribution of these proteins may explain the functional heterogeneity of the endoplasmic reticulum, such as the generation of spatially complex Ca2+ signals, Ca2+ homeostasis, and protein folding and quality control.  相似文献   

5.
Calcium, a signaling molecule in the endoplasmic reticulum?   总被引:10,自引:0,他引:10  
For many years now, it has been known that Ca2+ is an important signaling molecule in the cytosol of the cell, but emerging evidence suggests that Ca2+ might also play a signaling role in the endoplasmic reticulum. For example, agonist-induced fluctuations in free Ca2+ concentration in the endoplasmic reticulum can affect many functions of the endoplasmic reticulum, including protein synthesis and modification, and interchaperone interactions.  相似文献   

6.
The endoplasmic reticulum (ER) is a major site of protein synthesis and its inside, or lumen, is a major site of protein folding. The lumen of the ER contains many folding factors and molecular chaperones, which facilitate protein folding by increasing both the rate and the efficiency of this process. Amongst the many ER folding factors, there are three components that specifically modulate the folding glycoproteins bearing N-linked carbohydrate side chains. These components are calnexin, calreticulin and ERp57, and this review focuses on the molecular basis for their capacity to influence glycoprotein folding.  相似文献   

7.
The subcellular site of -amylase (EC 1.6.2.1) synthesis and transport was studied in barley aleurone layers incubated in the presence or absence of gibberellic acid (GA3). Using [35S]methionine as a marker, the site of amino-acid incorporation into organelles isolated from aleurone layers incubated with and without GA3 was determined following purification by isopycnic sucrose-density-gradient centrifugation. Incorporation of radioactivity into trichloroacetic-acid-insoluble proteins was greatest in those fractions exhibiting activity of an endoplasmic reticulum (ER) marker enzyme. Further fractionation of densitygradient fractions by sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis showed that a major portion of the radioactivity in the ER fractions was present in a protein co-migrating with marker -amylase. This protein was identified as authentic -amylase by immunoadsorbent chromatography and affinity chromatography. The newly synthesized -amylase associated with the ER was shown to be sequenstered within the lumen of the ER by experiments which showed that the enzyme was resistant to proteolytic degradation. The labelled -amylase sequestered in the ER can be chased from this organelle when tissue is incubated in unlabelled methionine following a 1-h pulse of labelled methionine. The isoenzymic forms of -amylase found in tissue homogenates and incubation media of aleurone layers incubated with and without GA3 were characterized after chromatography on diethylaminoethyl cellulose. In homogenates of GA3-treated aleurone layers, five peaks of -amylase activity were detected, while in homogenates of aleurone layers incubated with-out GA3 only three peaks of activity were found. In incubation media, four isoenzymes were found after GA3 treatment and two were found after incubation without GA3. We conclude that at least five -amylase isoenzymes are synthesized by the ER of barley aleurone layers and that this membrane system is involved in the sequestration and transport of four of these isoenzymes.Abbreviations CHA cyclohepataamylose - DEAE-cellulose diethylaminoethyl-cellulose - ER endoplasmic reticulum - GA3 gibberellic acid - SDS-PAGE sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis  相似文献   

8.
Endoplasmic reticulum (ER) stress is considered as a key factor in free fatty acid (FFA)-induced apoptosis. ERp46, a new member of the thioredoxin family, is highly expressed in pancreatic β-cells and plays an important role in glucose toxicity. In this study we examined the potential role of ERp46 in palmitic acid (PA)-induced cell apoptosis and the protective role of exendin-4, a long-acting agonist of the hormone glucagon-like peptide-1 (GLP-1) receptor. The glucose-sensitive mouse β-pancreatic cell line, βTC6, was used to investigate the mechanisms of PA-induced apoptosis. Our results showed that ERp46 expression was reduced in a dose- and time-dependent manner after PA treatment. Furthermore, inhibition of ERp46 expression by small interfering (si)RNA-mediated silencing enhanced the ER stress response via three separate pathways and increased βTC6 cell apoptosis rates. Moreover, exendin-4 reduced the ER stress response and levels of apoptosis in NC transfected cells after PA treatment, but not in cells transfected with ERp46siRNA. In conclusion, ERp46 plays a protective role in PA-induced cell apoptosis by decreasing the ER stress response and might be a novel target for anti-diabetic drugs. Exendin-4 might protect against βTC6 cell lipoapoptosis in part by activating ERp46 signaling pathway.  相似文献   

9.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   

10.
A series of PTH hybrids containing a diamine [NH2(CH2) n NH2; n = 4, 5, 6] in the C-terminal position was synthesized based on the H-Aib-Val-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-NH2 (Har = homoarginine) template. The compounds were pharmacologically characterized at PTH1R receptors for agonist activity.  相似文献   

11.
12.
It was demonstrated for the first time that the distribution of side-chain rotamers in the a-and d-positions of α-helices of coiled-coil (cc) proteins follows a certain trend, rather then being random. For instance, most side chains adopt t rotamers in the a-positions and g? rotamers in the d-positions of helical dimers. Vice versa, most side chains adopt g? rotamers in the a-positions and t rotamers in the d-positions of tetramers. It was concluded that selection of the side-chain rotamers depends on the packing of α-helices and, consequently, depends on the structural context.  相似文献   

13.
Yin JJ  Li YB  Wang Y  Liu GD  Wang J  Zhu XO  Pan SH 《Autophagy》2012,8(2):158-164
In pancreatic β-cells, the endoplasmic reticulum (ER) is the crucial site for insulin biosynthesis, as this is where the protein-folding machinery for secretory proteins is localized. Perturbations to ER function of the β-cell, such as those caused by high levels of free fatty acid and insulin resistance, can lead to an imbalance in protein homeostasis and ER stress, which has been recognized as an important mechanism for type 2 diabetes. Macroautophagy (hereafter referred to as autophagy) is activated as a novel signaling pathway in response to ER stress. In this review, we outline the mechanism of ER stress-mediated β-cell death and focus on the role of autophagy in ameliorating ER stress. The development of drugs to take advantage of the potential protective effect of autophagy in ER stress, such as glucagon like peptide-1, will be a promising avenue of investigation.  相似文献   

14.
β-Hairpins are the simplest form of β-sheets which, due to the presence of long-range interactions, can be considered as tertiary structures. Molecular dynamics simulation is a powerful tool that can unravel whole pathways of protein folding/unfolding at atomic resolution. We have performed several molecular dynamics simulations, to a total of over 250 ns, of a β-hairpin peptide in water using GROMACS. We show that hydrophobic interactions are necessary for initiating the folding of the peptide. Once formed, the peptide is stabilized by hydrogen bonds and disruption of hydrophobic interactions in the folded peptide does not denature the structure. In the absence of hydrophobic interactions, the peptide fails to fold. However, the introduction of a salt-bridge compensates for the loss of hydrophobic interactions to a certain extent. Figure Model of b-hairpin folding: Folding is initiated by hydrophobic interactions (Brown circles). The folded structure, once formed, is stabilized by hydrogen bonds (red lines) and is unaffected by loss of hydrophobic contacts  相似文献   

15.
Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.  相似文献   

16.
17.
BackgroundIn eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex.Scope of reviewThe aim of this review is to summarize the current structural knowledge about protein translocon components in mammals.Major conclusionsVarious structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation.General significanceThe protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.  相似文献   

18.
19.
Receptor-initiated phospholipase C activation and generation of IP(3) and DAG are important common triggers for a diversity of signal transduction processes in many cell types. Contributing to this diversity is the existence and differential cellular and subcellular distribution of distinct phospholipase C isoforms with distinct regulatory properties. The recently identified PLCε enzyme is an isoform that is uniquely regulated by multiple upstream signals including ras-family GTP binding proteins as well as heterotrimeric G-proteins. In this review we will consider the well documented biochemical regulation of this isoform in the context of cell and whole animal physiology and in the context of other G protein-regulated PLC isoforms. These studies together reveal a surprisingly wide range of unexpected functions for PLCε in cellular signaling, physiology and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号